cho biểu thức N=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\times\frac{4\sqrt{x}}{3}\)với x≥0
a)rút gọn N
b)tìm x để N=\(\frac{8}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)
\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(b)\) Ta có : \(R< -1\)
\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)
\(\Leftrightarrow\)\(4\sqrt{x}< 6\)
\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\)\(x< \frac{9}{4}\)
Chúc bạn học tốt ~
a/ ĐKXĐ:...
\(N=\left(\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\frac{4\sqrt{x}}{3}\)
\(N=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\frac{4\sqrt{x}}{3}\)
\(N=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b/ N=\(N=\frac{8}{9}\Rightarrow\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
\(\Leftrightarrow36\sqrt{x}=24x-24\sqrt{x}+24\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
Đặt \(\sqrt{x}=a\ge0\Rightarrow x=a^2\)
\(\Rightarrow24a^2-60a+24=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)
\(a.N=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\\ =\left(\frac{x+2}{\sqrt{x^3}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\\ =\left(\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\cdot\frac{4\sqrt{x}}{3}\\ =\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
\(b.N=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\Leftrightarrow4\sqrt{x}=\frac{8}{3}\left(x-\sqrt{x}+1\right)\\ \Leftrightarrow3\sqrt{x}=2\left(x-\sqrt{x}+1\right)\\ \Leftrightarrow2x-5\sqrt{x}+2=0\\ \left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)
Bước cuối bạn tự làm nha (do mk bận)