Tìm số nguyên dương n biết
32 < 2n <128
2,16 > 2n > 4
9,27 < 3n < 243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3 n . 3 = 243 => 3 n + 1 = 243 => 3 n + 1 = 3 5
=> n + 1 = 5 => n = 4
Vậy n = 4
b, 4 3 . 2 n + 1 = 1
=> 2 2 3 . 2 n + 1 = 1
=> 2 2 . 3 . 2 n + 1 = 1 => 2 6 . 2 n + 1 = 1
=> 2 6 + n + 1 = 1 => 2 n + 7 = 2 0
=> n + 7 = 0
Không tìm được số tự nhiên n thỏa mãn đầu bài
c, 2 n - 15 = 17
=> 2 n = 32 => 2 n = 2 5
=> n = 5
Vậy n = 5
d, 8 ≤ 2 n + 1 ≤ 64
=> 2 3 ≤ 2 n + 1 ≤ 2 6
=> 3 ≤ n + 1 và n+1 ≤ 6
=> 2 ≤ n và n ≤ 5
=> 2 ≤ n ≤ 5
Vậy 2 ≤ n ≤ 5
e, 9 < 3 n < 243
=> 3 2 < 3 n < 3 5
=> 2<n<5
Vậy 2<n<5
Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1
=> 2n chia hết cho 8
=> n chia hết cho 4
=> n chẵn
=> 3n chẵn
=> 3n+1 lẻ
=> 3n+1 chia 8 dư 1
=> 3n chia hết cho 8
=> n chia hết cho 8 (1)
Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4
=> 3n chia 5 dư 4;3 hoặc chia hết cho 5
=> n chia 5 dư 3;1 hoặc chia hết cho 5
- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)
- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)
- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)
=> n chia hết cho 5 (2)
Từ (1) và (2) suy ra n chia hết cho 40
Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương
P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
\(32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow5< n< 7\)
mà n nguyên dương
\(\Rightarrow n=6\)
1 .32 < 2^n < 128
=>2^5< 2^n < 2^7
=>n=6 ( n là số nguyên dương)
3. 9.27≤3 ^n ≤243
=>3^2*3^3≤3^n≤3^5
=>3^5≤3^n≤3^5
Dấu bằng xẩy ra khi n=5 (n là số nguyên dương)