K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

28 tháng 2 2015

nhầm, bằng 192 đấy

 

28 tháng 2 2015

gọi số đó là a

vì a chia 3,4,5,6 đều dư 12

=>(a-12) chia hết 3,4,5,6

=>(a-12) thuộc BC(3,4,5,6)

3=3 ; 4=2^2 ; 5=5 ; 6=2*3

BCNN(3,4,5,6) = 2^2*3*5 =60

BC(3,4,5,6)=B(60)= {0;60;120;180;...}

vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất

từ tập hợp trên => (a-12)=180 =>a=192

thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

1 tháng 8 2017

ko ngu dau ma noi do

1 tháng 8 2017

Không biết thì đừng có nói nha 

8 tháng 9 2017

1.số đó là 1920

2.số2

3.36

4.50

8 tháng 9 2017

phân tích từng số thành thừa số nguyên tố rồi tính .

VD: 1 : 

4=22 ;;;6=2.3;;; 8=23 ;;;; 10 = 2.5 ;;;; 12 =22.3

=> BCNN(4;6;8;10;12)=23.3.5=`10

27 tháng 3 2018

Gọi số tự nhiên đó là a 

ta có : a-2 chia hết cho 3;4;5;6

           a-2 thuộc BC (3;4;5;6)

            BC(3;4;5;6) = (60;120;...)

            a = (62;122;...)

  => a nhỏ nhất mà chia cho 7 dư 3 nên a =122

17 tháng 3 2018

gọi STN đó là a. Ta có:

a-2 chia hết cho 3;4;5;6

a-2 thuộc BC(3,4,5,6)

BCNN(3,4,5,6)=60

a={62;122;...}

vì a nhỏ nhất , a chia 7 dư 3 nên a=122

27 tháng 3 2018

Gọi số tự nhiên đấy là b .

Ta có : a-2 sẽ chia hết cho 3,4,5,6 

nên ta tìm bội chung của chúng ok

      rồi nói với cô giáo cô làm nốt họ em

7 tháng 3 2020

              Giải

Gọi số cần tìm là x.

x chia 3 dư 2 => x - 2 ⋮ 3

x chia 4 dư 2 => x - 2 ⋮ 4

x chia 5 dư 2 => x - 2 ⋮ 5

x chia 6 dư 2 => x - 2 ⋮ 6

⇒x - 2  ∈ BCNN(3;4;5;6)

Ta có : 3 = 3                  4 = 22         5 = 5           6 = 2.3

⇒BCNN(3;4;5;6) = 22 .3.5 = 60

mà B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }

⇒BC(3;4;5;6) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }

Nếu x - 2 = 0 => ( loại )

Nếu x - 2 = 60 => x = 60 - 2 = 58 ( loại )

Nếu x - 2 = 120 => x = 120 + 2 = 122 ( nhận )

Vì x phải nhỏ nhất nên x = 122

Vậy số tự nhiên nhỏ nhất cần tìm đó là: 122