Cho \(\Delta ABC\)có \(\widehat{ABC}\)=45o, \(\widehat{ACB}\)=75o và độ dài phân giác trong AD=2. Tính độ dài các cạnh của tam giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>BD=60/7cm
\(\Rightarrow\)AB = 1/2BC ⇒ BC = 2AB
Vì BD là phân giác ⇒ DA/DC = AB/BC = AB/2AB =1/2
b) AB = 12,5 cm \(\Rightarrow\) BC = 25 cm Áp dụng định lí pitago vào tam giác ABC vuông tại A ta có : AC2= BC2 – AB2 = 252 – 12,52 AC = 21,65 (cm) CABC = AB+ BC+ CA =12,5+25+21,65 = 59,15(cm) SABC = 1/2AB.AC =1/2.12,5.21,65 = 135,31 (cm2)