Cho 3 số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\)
CMR : \(\frac{1}{\sqrt{1+8a^3}}+\frac{1}{\sqrt{1+8b^3}}+\frac{1}{\sqrt{1+8c^3}}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(1-2a+4a^2\right)}\le\frac{1+2a+1-2a+4a^2}{2}=1+2a^2\)(BĐT AM-GM)
Tương tự cho \(\sqrt{1+8b^2};\sqrt{1+8c^2}\)ta được \(P\ge\frac{1}{1+2a^2}+\frac{1}{1+2b^2}+\frac{1}{1+2c^2}\)
Mặt khác \(\frac{1}{1+2a^2}=\frac{1}{1+2a^2}+\frac{1+2a^2}{9}-\frac{1+2a^2}{9}\ge2\sqrt{\frac{1}{1+2a^2}\cdot\frac{1+2a^2}{9}}-\frac{2}{9}a^2-\frac{1}{9}=\frac{5-2a^2}{9}\)
Khi đó: \(P\ge\frac{5-2a^2}{9}-\frac{5-2b^2}{9}-\frac{5-2c^2}{9}\) \(=\frac{15-2\left(a^2+b^2+c^2\right)}{9}=\frac{15-2\cdot3}{9}=1\)
Vậy Min P=1
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=3\\1+2a=1-2a+4a^2\\\frac{1}{1+2a^2}=\frac{1+2a^2}{9}\end{cases}}\)và vai trò a,b,c như nhau hay (a,b,c)=(1,1,1)
ap dung bdt am gm
\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)
\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)
tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)
\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)
tiep tuc ap dung bat cauchy-schwarz dang engel ta co
\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)
dau = xay ra \(\Leftrightarrow a=b=c=1\)
Hướng dẫn.
Bạn chứng minh bất đẳng thức $\dfrac{1}{\sqrt{1+8a^3}} \geqslant \dfrac{5}{9}-\dfrac{2}{9}a^2$ rồi cộng lại là xong.
Áp dụng BĐT Bunyakovsky, ta có:
\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)
Áp dụng BĐT Cauchy, ta có:
\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)
Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)
Đẳng thức xảy ra khi a = b = c = 1.
Vậy GTNN của A là 1 (khi a = b = c = 1).
\(\frac{a^2}{\sqrt{3a^2+8b^2+12ab+2ab}}\ge\frac{a^2}{\sqrt{3a^2+9b^2+12ab+a^2+b^2}}=\frac{a^2}{\sqrt{\left(2a+3b\right)^2}}=\frac{a^2}{2a+3b}\)
\(\Rightarrow VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{1}{5}\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Chứng minh BĐT phụ: \(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\) với \(x;y>0\) (*)
Ta có: \(3a^2+8b^2+14ab\)
\(=\left(3a^2+12ab\right)+\left(2ab+8b^2\right)\)
\(=3a\left(a+4b\right)+2b\left(a+4b\right)\)
\(=\left(3a+2b\right)\left(a+4b\right)\)
\(\Rightarrow\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le\frac{3a+2b+a+4b}{2}=2a+3b\)
\(\Rightarrow\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\)
Tương tự, ta có: \(\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}\ge\frac{b^2}{2b+3c}\)
\(\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{c^2}{2c+3a}\)
Áp dụng (*), ta có:
\(VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}\)
\(=\frac{1}{5}\left(a+b+c\right)\)
Vậy \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{1}{5}\left(a+b+c\right)\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Có: \(\frac{1}{\sqrt{1+8a^3}}=\frac{1}{\sqrt{\left(2a+1\right)\left(4a^2-2a+1\right)}}\ge\frac{1}{\frac{\left(2a+1\right)+\left(4a^2-2a+1\right)}{2}}=\frac{1}{2a^2+1}\)
( Sử dụng bđt: \(\frac{x+y}{2}\ge\sqrt{xy}\))
Tường tự rồi cộng lại:
\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{9}{2\left(a^2+b^2+c^2\right)+3}=\frac{9}{9}=1\)
Vậy...