K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0 

b) có vấn đề

c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 4+ 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300

15 tháng 6 2016

Ta chỉ cần tách các tổng thành tích thôi em nhé :)

a. \(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\) có tận cùng là chữ số 0.

b. \(A=27.3^n-2.3^n+32.2^n-7.2^n=25.3^n+25.2^n=25\left(3^n+2^n\right)\) nên A chia hết 25.

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

31 tháng 5 2015

a = 2\(^{n+1}\)(4+1) =10.2\(^n\) tận cùng =0

b= 3\(^n\)(27 -2) + 2\(^n\)(32-7)

= 25 (3\(^n\)+2\(^n\)) chia hết cho 25

 

 

 

 

 

 

a.8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0

=>đpcm

b.3n+3-2.3n+2n+5-7.2n=3n(27-2)+2n(32-7)

=25.3n+25.2n=25(3n+2n) chia hết cho 25

=>đpcm

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý