Chứng minh rằng với n thuộc N* a) 8.2^n+2^n+1 có tận cùng bằng chữ số 0 b) 3^n+3 - 2.3^n - 7.2^n chia hết cho 25 c) 4^n+3 + 4^n+2 - 4^n+1 - 4^n chia hết cho 300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần tách các tổng thành tích thôi em nhé :)
a. \(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\) có tận cùng là chữ số 0.
b. \(A=27.3^n-2.3^n+32.2^n-7.2^n=25.3^n+25.2^n=25\left(3^n+2^n\right)\) nên A chia hết 25.
a, Ta có : 8.2n + 1n + 1
= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)
= 23 + n . 1
Mà 23 + n luôn luôn ko chia hết cho10
Nên 8.2n + 1n + 1 ko chi hết cho10
a = 2\(^{n+1}\)(4+1) =10.2\(^n\) tận cùng =0
b= 3\(^n\)(27 -2) + 2\(^n\)(32-7)
= 25 (3\(^n\)+2\(^n\)) chia hết cho 25
a.8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0
=>đpcm
b.3n+3-2.3n+2n+5-7.2n=3n(27-2)+2n(32-7)
=25.3n+25.2n=25(3n+2n) chia hết cho 25
=>đpcm
a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)
Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).
b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)
Vì \(25⋮25\)
nên \(\left(3^n+2^n\right)\times25⋮25\)
Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300