Cho x+2y+3z=18; x,y,z là các số dương. CMR:
\(\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}\ge\frac{51}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT+3=\left(x+2y+3z+6\right)\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
= \(24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\ge\dfrac{9}{3+x+2y+3z}=\dfrac{9}{21}\)
\(\Rightarrow VT\ge\dfrac{24.9}{21}-3=\dfrac{51}{7}\)
dấu = xảy ra khi x=2y=3z=6 hay x=6,y=3,z=2
Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18
\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)
Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\)
Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)
\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)
\(=\frac{24.9}{18+3}-3=\frac{51}{7}\)
\(\frac{2y+3z+5}{1+x}+1+\frac{3z+x+5}{1+2y}+1+\frac{x+2y+5}{1+3z}+1\ge\frac{51}{7}+3=\frac{72}{7}\left(1\right)\)
Vậy ta cần chứng minh Bđt (1) , ta có:
\(VT_{\left(1\right)}=\frac{2y+3z+6+x}{1+x}+\frac{3z+x+2y+6}{1+2y}+\frac{x+2y+3z+6}{1+3z}\)
\(=\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{1+3z}\right)\)
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{3z}\right)\)
\(\ge\left(3z+x+2y+6\right)\left(\frac{9}{3+x+2y+3z}\right)\)
\(=\left(18+6\right)\cdot\frac{9}{18+3}=24\cdot\frac{3}{7}=\frac{72}{7}\)
Vậy Bđt (1) đúng =>Đpcm
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a, Áp dụng bđt bunhiacôpxki ta có
\(\left(x+2y+3z\right)^2\le\left(1^2+2^2+3^2\right)\left(x^2+y^2+z^2\right)\)
\(\left(x+2y+3z\right)^2\le14\left(x^2+y^2+z^2\right)\)
Mà x+2y+3z=6 nên \(36\le14\left(x^2+y^2+z^2\right)\)
=> \(x^2+y^2+z^2\ge\frac{18}{7}\)
\(VT=\dfrac{2y+3z+5}{1+x}+1+\dfrac{3z+x+5}{2y+1}+1+\dfrac{x+2y+5}{1+3z}+1-3\)
\(VT=\dfrac{x+2y+3z+6}{1+x}+\dfrac{x+2y+3z+6}{1+2y}+\dfrac{x+2y+3z+6}{1+3z}-3\)
\(VT=24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)-3\ge\dfrac{24.9}{1+x+1+2y+1+3z}-3=\dfrac{216}{21}-3=\dfrac{51}{7}\)
h) \(=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]=3x\left(2y-3z\right)\left(x^2-10y+15z\right)\)
k) \(=\left(x+2\right)\left(3x-5\right)\)
l) \(=\left(18^2+3\right)\left(x+3\right)=327\left(x+3\right)\)
m) \(=7xy\left(2x-3y+4xy\right)\)
n) \(=2\left(x-y\right)\left(5x-4y\right)\)
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\Rightarrow a+b+c=18\)
Có: BDT
\(\Leftrightarrow\sum_{cyc}\left(\frac{b+c+5}{a+1}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{a+b+c-a+5}{a+1}\right)\ge\frac{51}{7}\)(1)
Đặt tiếp tục: \(\left\{{}\begin{matrix}m=a+1\\n=b+1\\p=c+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sum_{cyc}\left(\frac{24-m}{m}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{24}{m}-1\right)\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge21\cdot\frac{3}{7}=9\)
\(\left(\frac{m}{n}-2+\frac{n}{m}\right)+\left(\frac{p}{m}-2+\frac{m}{p}\right)+\left(\frac{n}{p}-2+\frac{p}{n}\right)\ge0\)
\(\Leftrightarrow\frac{\left(m-n\right)^2}{mn}+\frac{\left(p-m\right)^2}{pm}+\frac{\left(n-p\right)^2}{pn}\ge0\)(đúng)
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\)
BĐT
\(\Leftrightarrow\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{a+b+c-a+5}{a+1}+\frac{a+c+b-b+5}{b+1}+\frac{a+b+c-c+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{24-\left(a+1\right)}{a+1}+\frac{24-\left(b+1\right)}{b+1}+\frac{24-\left(c+1\right)}{c+1}\ge\frac{51}{7}\)(1)
Đặt tiếp: \(\left\{{}\begin{matrix}a+1=m\\b+1=n\\c+1=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
(1)\(\Leftrightarrow\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{3}{7}\left(m+n+p\right)\)( do m+n+p>0)
\(\Leftrightarrow3+\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{m}{p}+\frac{p}{m}\ge\frac{3}{7}\left[\left(a+b+c\right)+3\right]\)
\(\Leftrightarrow\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{p}{m}+\frac{m}{p}-6\ge0\)
Tới đây chắc bn làm đc rồi