Cho x, y, z khác 0 thỏa mãn \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=2 và \(\frac{2}{xy}\)-\(\frac{1}{z^2}\)=4 Tính P=(x+2y+z)2018.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hơi dài mà lười nên mình nói cách làm nha :P
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)
bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)
tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự
quy đồng rồi tính ra = 0 là được
Bạn ghi đề sai ở dữ kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=0\)
Vì điều đó tương đương với \(x=y=z=0\)
Ta có \(xy+yz+xz=\frac{2^2-18}{2}=-7\)
\(x+y+z=2\)=> \(z-1=-x-y+1\)
=> \(\frac{1}{xy+z-1}=\frac{1}{xy-x-y+1}=\frac{1}{\left(x-1\right)\left(y-1\right)}\)
Tương tự \(\frac{1}{yz+x-1}=\frac{1}{\left(y-1\right)\left(z-1\right)};\frac{1}{xz+y-1}=\frac{1}{\left(z-1\right)\left(x-1\right)}\)
=> \(S=\frac{x+y+z-3}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=-\frac{1}{xyz-\left(yz+xy+xz\right)+\left(x+y+z\right)-1}\)
\(=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)
Vậy \(S=-\frac{1}{7}\)
\(\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) \(\Rightarrow\frac{1}{z}=-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=2\Rightarrow\frac{1}{4x^2}-\frac{1}{x}+1+\frac{1}{4y^2}-\frac{1}{y}+1=0\)
\(\Rightarrow\left(\frac{1}{2x}-1\right)^2+\left(\frac{1}{2y}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x}-1=0\\\frac{1}{2y}-1=0\end{matrix}\right.\)
\(\Rightarrow x=y=\frac{1}{2}\Rightarrow\frac{1}{z}=2-\left(\frac{1}{x}+\frac{1}{y}\right)=-2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+1-\frac{1}{2}\right)^{2018}=1^{2018}=1\)