Cho nửa đường tròn đường kính BC = 2R tâm O cố định. Điểm A di động trên nửa đường tròn. Gọi H là hình chiếu của điểm A trên BC. Gọi D và E lần lượt là hình chiếu của H trên AC và AB. Xác định vị trí điểm A sao cho tứ giác AEHD có diện tích lớn nhất? Tính diện tích lớn nhất đó theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để DE lớn nhất thì AH lớn nhất
hay \(AH=\dfrac{BC}{2}\)
\(\Leftrightarrow\)ΔABC vuông cân tại A
hay điểm A là điểm chính giữa của (O)
a, Ta có: E C A ^ + O C A ^ = 90 0 và A C H ^ + O A C ^ = 90 0
mà O A C ^ = O C A ^ (do tam giác AOC cân tại O)
Suy ra E C A ^ = A C H ^
Khi đó E A C ^ = H A C ^ (cùng lần lượt phụ với E C A ^ và A C H ^ ), ta có đpcm
b, Chứng minh tương tự suy ra BC là phân giác của F B H ^
Từ đó, chứng minh được BC vuông góc HF (1)
Tam giác ABC có trung tuyến OC = 1 2 AB. Suy ra tam giác ABC vuông tại C , tức là BC vuông góc với AC (2)
Từ (1),(2) suy ra đpcm
c, Ta có : AE+BF =2OC=2R không đổi
d, Ta có A E . B F ≤ A E + B F 2 4 = R 2
suy ra AE.BF lớn nhất = R 2 óAE=BF=R
Điều này xẩy ra khi C là điểm chính giữa cung AB
Hình tự vẽ nha bạn :>
Xét ΔABCΔABC có AO = OB = OC
⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy
⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o
Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)
⇒EH=AD⇒EH=AD
Theo HTL, ta có :
{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2
⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)Hình tự vẽ nha bạn :>
Xét ΔABCΔABC có AO = OB = OC
⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy
⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o
Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)
⇒EH=AD⇒EH=AD
Theo HTL, ta có :
{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2
⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)