K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

câu 4 đổi xấu + thành dấu -

1 tháng 1 2018

câu a làm theo hằng đẳng thức 

câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}

theo bất đẳng thức trong tam giác thì hiệu 2 cạnh  luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0 

mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0 

k cho mk cái nha

a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)

\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)

\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)

\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)

\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)

b, Như bạn Trần Thị Nhung

10 tháng 6 2016

a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)

Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0

c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)

Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6

5 tháng 1 2022

\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)

5 tháng 1 2022

\(=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)

28 tháng 12 2017

M = ( a+ b2 - c2 )2 - 4a2b2

= ( a+ b2 - c2 )2 -  ( 2ab )2 = (a2 + b2 - c2 + 2ab )( a2 + b2 - c2 - 2ab )

= [( a + b )2 - c2 ] . [( a - b )2 -c2 ]

= ( a + b + c )( a+ b - c )( a - b + c )( a - b -c )