K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{4x-8}-\sqrt{x-2}=2.\)

ĐK \(x\ge2\)

PT<=> \(2\sqrt{x-2}-\sqrt{x-2}=2\)

<=> \(\sqrt{x-2}=2\)

<=> x-2=4

<=> x=6 (t/m)

Vậ pt có nghiệm x=6

29 tháng 5 2019

mơn bn nha

24 tháng 9 2016

Đk:\(x\ge1\)

\(pt\Leftrightarrow3\left(x-2\right)\sqrt{x-1}\sqrt{x^2+x+1}+18\left(x-1\right)=x\left(x^2+x+1\right)\)

Chia 2 vế của pt cho \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)ta đc:

\(3\left(x-2\right)\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}+\frac{18\left(x-1\right)}{x^2+x+1}=x\)

Đặt \(y=\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}\left(y\ge0\right)\) pt trở thành

\(3\left(x-2\right)y+18y^2-x=0\)

\(\Leftrightarrow\left(3y-1\right)\left(6y+x\right)=0\)

\(\Leftrightarrow3y-1=0\left(y\ge0;x\ge1\Rightarrow6y+x\ge1\right)\)

\(\Leftrightarrow y=\frac{1}{3}\)\(\Leftrightarrow\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}=\frac{1}{3}\)

\(\Leftrightarrow9\left(x-1\right)=x^2+x+1\)

\(\Leftrightarrow x^2-8x+10=0\)

\(\Leftrightarrow x=4\pm\sqrt{6}\)

Vậy...

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

15 tháng 12 2021

\(ĐK:x\ge5\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{x-5}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow4b^2-3a^2=x-20\)

\(PT\Leftrightarrow4b^2-3a^2+a+b+ab=0\\ \Leftrightarrow4ab+4b^2-3a^2-3ab+a+b=0\\ \Leftrightarrow4b\left(a+b\right)-3a\left(a+b\right)+\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(4b-3a+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b=0\left(\text{loại do }a+b>0\right)\\4b-3a+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow4\sqrt{x-5}=3\sqrt{x}-1\\ \Leftrightarrow16x-80=9x-6\sqrt{x}+1\\ \Leftrightarrow7x+6\sqrt{x}-81=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-\dfrac{27}{7}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=9\left(nhận\right)\)

15 tháng 12 2021

camon nhìu nhaa :>

 

7 tháng 10 2021

Đk: \(x\ge1\)

\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))

7 tháng 10 2021

Bạn làm chi tiết ra nữa đc khum? Như thế mình vẫn chưa hiểu lắm :((

24 tháng 5 2016

cách 1:Viết thành hằng đẳng thức

\(\Leftrightarrow x^2+x+\frac{1}{4}=x+2010-\sqrt{x+2010}+\frac{1}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2010}-\frac{1}{2}\right)^2\)

tới đây dễ rùi nhé

cách 2:\(ĐKXĐ:x\ge-2010\)

đặt \(\sqrt{x+2010}=t\left(t>0\right)\)

\(\Rightarrow x^2+t=t^2-x\)

\(\Rightarrow x^2-t^2+x+t=0\)

\(\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)

tự làm tiếp

cách 3:\(\Leftrightarrow\sqrt{x+2010}+x^2=2010\)

\(\Leftrightarrow\sqrt{x+2010}+x^2-2010=0\)

\(\Leftrightarrow x-\sqrt{2010-\sqrt{x+2010}}=0\)

\(\Leftrightarrow\sqrt{2010-\sqrt{x+2010}}+x=0\)

Đến đây tách căn ra ta đc 2 TH (1) và (2)

\(\Leftrightarrow2x+\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(1\right)\)

\(\Leftrightarrow2x+3\sqrt{19}\sqrt{47}+1=0\)

Tự làm tiếp

\(\Leftrightarrow2x-\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(2\right)\)

\(\Leftrightarrow2x-3\sqrt{19}\sqrt{47}+1=0\)

Tự làm tiếp nhé

ĐẶT x-1=a  , x+3=b   (a,b cùng dấu)

\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)

\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)

\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)

\(\Leftrightarrow a^2b^2-20ab+64=0\)

\(\Leftrightarrow\left(ab-10\right)^2-36=0\)

\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)

Đến đây đơn giản rồi bn tự giải nhé

26 tháng 7 2019

ĐK:....\(\frac{x+3}{x-1}\ge0\)

<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)

<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)

Em tự làm tiếp nhé