CHo tứ giác ABCD. Tìm M nằm trong ABCD sao cho tổng các khoảng cách từ M đến các đỉnh tứ giac nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
L=MA+MB+MC+MD
L=(MA+MD)+(MB+MC)
(MA+MD) nhỏ nhất khi AMD trên đường thẳng
(MB+MC) nhỏ nhất khi BMC trên đường thẳng
=> Lmin đạt được khi M là giao hai đường chéo AD và BC
\(MA+MB=MC+MD\)
\(\left(MA+MD\right)+\left(MB+MC\right)\)
\(\left(MA+MD\right)\) nhỏ nhất khi \(AMD\) trên đường thẳng
\(\left(MB+MC\right)\) nhỏ nhất khi \(BMC\) trên đường thẳng
=> GTNN đạt được khi \(M\) là giao hai đường chéo \(AD,BC\)
Mình làm hai cách nhé
Với ba điểm M, A, C => MA + MC ≥ AC
Ta có: MB + MD ≥ BD
AM + MB + MC - MD ≥ AC + BD (Không đổi)
Dấu ''='' xảy ra khi:
+) M thuộc AC <=> M = O
+) M thuộc BD
Vậy GTNN (AM + MB + MC + MD) = AC + BD <=> M = O
a) giao điểm của các đường phân giác
b) M≡T (điểm T được gọi là điểm Toricenli của tam giác ABC).
hoặc M≡B
nếu bạn nói M trùng B thì phải nói rõ điều kiện đặt cho 3 cạnh của tam giác
Gọi O là giao điểm của AC và BD
TH1: M trùng O
=> AM+MB+MC+AD=AC+BD(1)
TH2: M không trùng O
Áp dụng BĐT tam giác, ta có:
\(\hept{\begin{cases}AM+MC>AC\\MB+MD>BD\end{cases}\Rightarrow AM+MB+MC+MD>AC+BD}\)(2)
Từ (1)và (2) => để tổng khoảng cách từ M đến cách đỉnh trong tứ giác ABCD nhỏ nhất => M trùng O