cho tam giác ABC vuông tại A, D thuộc AB; E thuộc AC. gọi M,N,P,Q theo thứ tự là trung điểm của DE,BE,BC,CD. chứng minh rằng : MNPQ là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Ta có: \(AD\cdot AB=AE\cdot AC\)
nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
a. Xét \(2\Delta:\Delta BDC\) và \(\Delta CMD\) có:
\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(gt\right)\\BC.chung\end{matrix}\right.\)
\(\Rightarrow\Delta BDC=\Delta CMD\) (cạnh huyền - góc nhọn)
b. Vì \(\Delta BDC=\Delta CMD\) (theo câu a)
\(\Rightarrow\widehat{DCB}=\widehat{MBC}\) (2 góc tương ứng)
\(\Rightarrow\Delta BCE\) cân tại E
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB