K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2019

có đk j nx ko bạn

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{c^2+a^2}\)

\(\ge a-\frac{ab^2}{2ab}+b-\frac{bc^2}{2bc}+c-\frac{ca^2}{2ca}=a-\frac{b}{2}+b-\frac{c}{2}+c-\frac{a}{2}=\frac{a+b+c}{2}\)

10 tháng 8 2017

Ê, thế bài 3 BVN làm thế nào

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.

4 tháng 12 2015

Ta có: BĐT tương đương

∑3a33(a2+b2)+(a−b)2≥a+b+c2⇔∑(a−3b2a+a(a−b)23(a2+b2)+(a−b)2)≥a+b+c2⇔∑3b2a+a(a−b)23(a2+b2)+(a−b)2≤a+b+c2⇔∑b2(1−6ab3(a2+b2)+(a−b)2)−∑a(a−b)23(a2+b2)+(a−b)2≥0⇔∑(a−b)2(2b−a3(a2+b2)+(a−b)2)≥0

TH1: Giả sử a≥b≥c

Ta dễ dàng chứng minh được (a−c)Sb+(a−b)Sc≥0,(a−c)Sb+(b−c)Sa≥0,do Sa+Sc≥0,mà a-c ≥a−b nên  (a−c)Sb+(a−b)Sc≥0,còn(a−c)Sb+(b−c)Sa≥0 ⇔(2ab+2c2+4ac−5bc)(ab−c2)≥0,đúng theo giả thiết.Đây là tiêu chuẩn 4 nên ta có đ.p.c.m

TH2:TH này khó hơn chút,giả sử a≥c≥b

Ta có ngay Sa,Sb≥0

Chỉ cần chứng minh Sc+Sa≥0⇔2abc+2b3+4bc2+2a2c+2b2c≥ab2+2ac2+2a2b+3abc

Lại có 2abc+2a2c≥2ac2+2a2b và a≥2b⇒2a2c≥b2+3abc⇒ nên suy ra Sa+Sc≥0,theo tiêu chuẩn 1 ta có đ.p.c.m

Từ đây chứng minh được bài toán,đẳng thức xảy ra khi và chỉ khi a=b=c

26 tháng 5 2017

2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1) 

Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)

\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

26 tháng 5 2017

cám ơn nhiều.

9 tháng 9 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

4 tháng 11 2018

Ap dụng bất đẳng thức Cauchy-Schwarz dạng Engel nhé bạn

\(N=\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{27}{2\left(a+b+c\right)}=\frac{3}{2}+\frac{9}{2}=6\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

~ Đấng Ed :) ~