Hãy so sánh a và b biết: A= 1 + 1/2+1/3+1/4+...+1/15+1/16 và b= 3
các bạn giải nhanh giúp mình nhé!
mai mình thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)
\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)
\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)
Mà \(\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)
Vậy : M > N
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}\)
\(=>A>\frac{65}{132}\)
\(A=1+\frac{1}{2}+...+\frac{1}{16}\)
= \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{12}\right)+\left(\frac{1}{13}+...+\frac{1}{16}\right)\)
> \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
=\(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
=\(1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
= \(1+2\times\frac{13}{12}\)
= \(1+\frac{13}{6}\)
= \(1+2+\frac{1}{6}\)
= \(3+\frac{1}{6}\)>\(3\)
=> \(A>3+\frac{1}{6}>3\)
=> \(A>3+\frac{1}{6}>B\)
=> \(A>B\)