K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Phương trình : \(x^2-2mx+2m-3=0\left(1\right)\)

Xét : \(\Delta=m^2-\left(2m-3\right)=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2>0,\forall m\)

=> Phương trình 1 luôn có 2 ngiệm phân biệt x1, x2

\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)

Áp dụng định lí Vi ét cho phương trình (1) Ta có:

x1+x2=2m; x1.x2=2m-3

Khi đó: \(A=\left(2m\right)^2-2.\left(2m-3\right)=\left(2m\right)^2-2.2m+1+5=\left(2m-1\right)^2+5\ge5\)

'=" xảy ra <=> 2m-1=0 <=> m=1/2

Vậy : min A=5 khi và chỉ khi m=1/2

1 tháng 4 2023

\(\left(m-1\right)x^2-2mx+m-4=0\)

Theo Vi - ét , ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-4}{m-1}\end{matrix}\right.\)

Ta có :

\(A=3\left(x_1+x_2\right)+2x_1x_2-8\)

\(=3\left(\dfrac{2m}{m-1}\right)+2\left(\dfrac{m-4}{m-1}\right)-8\)

\(=\dfrac{6m}{m-1}+\dfrac{2m-8}{m-1}-8\)

\(=\dfrac{6m+2m-8}{m-1}-8\)

\(=\dfrac{8m-8}{m-1}-8\)

\(=\dfrac{8\left(m-1\right)}{m-1}-8\)

\(=8-8\)

\(=0\)

Vậy biểu thức A không phụ thuộc giá trị m

1 tháng 4 2023

uii cảm ơn bạn nhiều nhakk<3.

30 tháng 4 2020

Nhầm mất :v

\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=2^3-3.\left(-2\right).2=20\)

30 tháng 4 2020

Pha cuối hơi sai : sửa

A = \(2\left(2^2-3.\left(-2\right)\right)=2\left(4+6\right)=2.10=20\)

23 tháng 1 2022

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)

\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)

Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)

Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4m^2+2m^2-4m+3=6m^2-4m+4\)

bạn kiểm tra lại đề xem có vấn đề gì ko ? 

NV
23 tháng 1 2022

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=\left(2m\right)^2+2m^2-4m+3\)

\(=6m^2-4m+3\)

Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)

\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)

3 tháng 5 2016

chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm

3 tháng 5 2016

Lập Delta rồi cho nó >0 giải ra . K = \(x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\) áp dụng vi-et thay vào là ra

19 tháng 12 2020

a, Phương trình có hai nghiệm khi 

\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)

b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(A=\left|2x_1x_2+x_1+x_2-4\right|\)

\(=\left|m^2-2-m-4\right|\)

\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)

\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)

\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)