Cho a,b,c>0. CM:
\(2.\left(\frac{a}{b+2C}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)
Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)
Cộng vế với vế:
\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)
\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)
\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)
\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho \(a=b=c\)
\(\Rightarrow2\left(\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\right)\ge1+\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\)
\(\Leftrightarrow2\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)
\(\Leftrightarrow2\ge2\) ( Đúng)
\(\Rightarrow2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)≥\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\)
Không mất tính tổng quát, chuẩn hóa a + b + c = 1
Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)
Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*
Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c
Chuẩn hóa ta có : \(a+b+c=3\)
=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)
Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)
<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)
<=> \(4a^3-5a^2-2a+3\ge0\)
<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng
Khi đó
\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
trả lời
dùng bất đẳng thức cosi đc ko
hok tốt
undefined la gi