cho tam giác ABC nội tiếp đường tròn tâm O có trực tâm H ,phân giác trong của \(\widehat{A}\) cắt đường tròn O tại M. Kẻ đường cao AK của tam giác.
Chứng minh rằng:a) Đường thẳng OM đi qua trung điểm N của BC
b) \(\widehat{KAM}=\widehat{MAO}\)
c) AH=2NO
Giup em với, em sắp thi chuyển cấp rồi T.T
a) Ta có: AM là phân giác \(\widehat{BAC}\)=> \(\widehat{BAM}\)= \(\widehat{CAM}\)=> \(\widebat{BM}\)=\(\widebat{CM}\)
=> BM = CM
mà OB=OC (bán kính (O))
=> OM là đường trung trực của BC => OM đi qua tđ N của BC
b) Từ A vẽ đường kính AQ => tam giác ACQ vuông tại C => \(\widehat{CAO}\)+ \(\widehat{AMC}\)=90 (1)
AK là đg cao => tam giác AKB vuông tại K => \(\widehat{BAK}\)+ \(\widehat{ABK}\)=90 (2)
mà \(\widehat{AMC}\)= \(\widehat{ABK}\)(cùng chắn \(\widebat{AC}\)) (3)
Từ (1),(2),(3) => \(\widehat{CAO}\)= \(\widehat{BAK}\)
mà \(\widehat{BAM}\)= \(\widehat{MAC}\)(cmt)
\(\widehat{BAM}\)= \(\widehat{BAK}\)+ \(\widehat{KAM}\)
\(\widehat{MAC}\)= \(\widehat{CAO}\)+\(\widehat{MAO}\)
=> \(\widehat{KAM}\)= \(\widehat{MAO}\)