Cho tg ABC vuông tại A. Gọi M, N lần lượt là trung điểm của AB, AC. Hạ đường cao AH của tg ABC
a. cm AB^2 = BH. BC
b. đường phân giác BE cắt AH tại D. cm \(\frac{DH}{DA}=\frac{EA}{EC}\)
GIÚP MÌNH CÂU B THÔI CŨNG ĐƯỢC Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)
b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)
c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)
\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)
Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))
\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)
\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)
Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v
a) Xét \(\Delta DBH\) và \(\Delta DHA\)có:
\(\widehat{BDH}=\widehat{HDA}=90^0\)
\(\widehat{DBH}=\widehat{DHA}\) cùng phụ với góc DHB
suy ra: \(\Delta DBH~\Delta DHA\)
\(\Rightarrow\)\(\frac{DH}{DA}=\frac{BH}{HA}\) (1)
C/m tương tự ta có: \(\Delta HAB~\Delta HCA\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BH}{HA}\) (2)
Từ (1) và (2) suy ra: \(\frac{DH}{DA}=\frac{AB}{AC}\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: HB=HC
hay H là trung điểm của BC
b: Xét ΔMAD và ΔMBH có
\(\widehat{MAD}=\widehat{MBH}\)
MA=MB
\(\widehat{AMD}=\widehat{BMH}\)
Do đó:ΔMAD=ΔMBH
Suy ra: AD=BH
hay BH=2,5cm
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay AH=6(cm)
bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
a) dễ chứng minh tam giác HBA đồng dạng với tam giác ABC
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\left(1\right)\Rightarrow AB^2=BH\cdot BC\)
b) Xét \(\Delta ABH\)có
BD là đường phân giác của \(\Delta ABH\)
suy ra \(\frac{DH}{DA}=\frac{BH}{AB}\left(2\right)\)
Xét \(\Delta ABC\)có
BE à đường phân giác của \(\Delta ABC\)
suy ra \(\frac{EA}{EC}=\frac{AB}{BC}\left(3\right)\)
từ 1,2,3 suy ra đpcm