Cho hình bình hành ABCD,điểm F trên cạnh BC.Tia AF cắt 2 đường thẳng BD và DC lần lượt ở E và G.Chứng minh rằng:
a) Δ BEF đồng dạng Δ DEA
b) EG.EB=ED.EA
c)\(^{AE^2}\)=EF.EG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEF và ΔDEA có
góc BEF=góc DEA
góc EBF=góc EDA
=>ΔBEF đồng dạng với ΔDEA
b: Xét ΔEAB và ΔEGD có
góc EAB=góc EGD
góc AEB=góc GED
=>ΔEAB đồng dạng với ΔEGD
=>EA/EG=EB/ED
=>EA*ED=EB*EG
a: Xét ΔBEF và ΔDEA có
góc BEF=góc DEA
góc EBF=góc EDA
=>ΔBEF đồng dạng với ΔDEA
Xet ΔDGE và ΔBAE có
góc EDG=góc EBA
góc DEG=góc BEA
=>ΔDGE đồng dạng với ΔBAE
b: ΔBEF đồng dạng với ΔDEA
=>EB/ED=EF/EA
=>EA*EB=ED*EF
=>EA=ED*EF/EB
ΔDGE đồng dạng với ΔBAE
=>ED/EB=EG/EA
=>ED*EA=EB*EG
=>EA=EB*EG/ED
=>EA^2=EF*EG
Tham khảo:a) Xét tam giác BEF và tam giác DEA có:
góc BEF = góc AED (đối đỉnh);
góc ADE = góc EBF (ở vị trí so le trong của AD song song với BC "ABCD là hình bình hành")
=> tam giác BEF đồng dạng với tam giác DEA (g-g)
Xét tam giác DGE và tam giác BAE có:
góc DEG = góc AEB (đối đỉnh);
góc EDG = góc ABE (vị trí so le trong của AB song song với CD "ABCD là hình binh hành")
=> tam giác DGE đồng dạng với tam giác BAE (g-g)
b) tam giác BEF đồng dạng với tam giác DEA
=> BE/DE=EF/EA (1)
Tam giác BAE đồng dạng với tam giác DGE
=>BE/DE=AE/GE (2)
Từ (1)(2) =>EF/EA=AE/GE=> EF.EG=AE^2
c) tam giác BEF đồng dạng với tam giác DEA
=> BE/DE=BF/DA (3)
Tam giác BAE đồng dạng với tam giác DGE
=> BE/DE=BA/DG (4)
Từ (3)(4) => BF/AD=BA/DG=> BF.DG=BA.AD
Mà AB và AD là 2 cạnh của hình bình hành ABCD nên AB.AD không đổi
=> BF.DG không đổi khi F di chuyển trên BC
Câu 2: pt đã cho \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)
\(\Leftrightarrow2x^3-6x^2-6x-8=0\)
\(\Leftrightarrow x^2-3x^2-3x-4=0\)
\(\Leftrightarrow\left(x-1\right)^3-6\left(x-1\right)-9=0\) (*)
Đặt \(x-1=t\) thì (*) trở thành \(t^3-6t-9=0\)
\(\Leftrightarrow t^3-9t+3t-9=0\)
\(\Leftrightarrow t\left(t^2-9\right)+3\left(t-3\right)=0\)
\(\Leftrightarrow\left(t-3\right)\left(t^2+3t\right)+3\left(t-3\right)=0\)
\(\Leftrightarrow\left(t-3\right)\left(t^3+3t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t^2+3t+3=0\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Vậy pt đã cho có nghiệm \(x=4\)
bài đấy thì em làm được rồi á. Chỉ là em đăng lên xem còn cách nào giải hay hơn thôi ạ...
#muon roi ma sao con
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)
a, Vì tứ giác ABCD là hình bình hành
⇒ \(\left\{{}\begin{matrix}\text{AB // CD}\\\text{AD // BC}\end{matrix}\right.\)
ΔDEA có BF // AD (BC // AD)
⇒ ΔBEF ~ ΔDEA (đpcm)
b, ΔDEG có AB // DG (AB // CD)
⇒ ΔABE ~ ΔGDE
⇒ \(\frac{AE}{EG}=\frac{EB}{ED}\)
⇒ EG . EB = ED . EA (đpcm)
c, Vì ΔBEF ~ ΔDEA
⇒ \(\frac{BE}{DE}=\frac{EF}{AE}\)(1)
Vì ΔABE ~ ΔGDE
⇒ \(\frac{BE}{DE}=\frac{AE}{EG}\)(2)
Từ (1), (2) ⇒ \(\frac{EF}{AE}=\frac{AE}{EG}\)
⇒ AE2 = EF . EG (đpcm)