Cho x,y,z là các số dương.Chứng minh rằng:x/2x+y+z + y/2y+z+x + z/2z+x+y <= 3/4?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy-Schwarz:
\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)
\(=\frac{x}{\left(x+y\right)+\left(x+z\right)}+\frac{y}{\left(x+y\right)+\left(y+z\right)}+\frac{z}{\left(y+z\right)+\left(x+z\right)}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)
\("="\Leftrightarrow x=y=z\)
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
(x2 y - y2 x) + (x2 z - xyz) + (z2 y - z2 x) + (y2 z - xyz) = (x-y)(xy+zx-z2 -yz)=(x-y)(x-z)(y+z)=0
Giải giùm rồi đấy bạn
Đặt \(\hept{\begin{cases}2x+y+z=4a\\2y+x+z=4b\\2z+x+y=4c\end{cases}\Rightarrow}\hept{\begin{cases}x=3a-b-c\\y=3b-c-a\\z=3c-a-b\end{cases}}\)thay vào biểu thức đó
\(\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)
\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)
\(=\frac{3}{4}-\frac{b-c}{4a}+\frac{3}{4}-\frac{c-a}{4b}+\frac{3}{4}-\frac{a-b}{4c}\)
\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)
Áp dụng BĐT sau: \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\ge6\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\ge\frac{6}{4}\)
\(\Leftrightarrow\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\le\frac{3}{4}\)
Từ đó ta có: \(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)(đpcm).
Dấu "=" xảy ra <=> x=y=z.
đặt a = 2x+y+z ; b = 2y+z+x ; c = 2z+x+y => a+b+c = 4x+4y+4z
=> a - (a+b+c)/4 = x => x = (3a-b-c)/4 ; tương tự y = (3b-c-a)/4 ; z = (3c-a-b)/4
thay vào vế trái ta có
P = (3a-b-c)/4a + (3b-c-a)/4b + (3c-a-b)/4c =
= 9/4 - (b/4a + c/4a + c/4b + a/4b + a/4c + b/4c)
= 9/4 - (1/4)(b/a+a/b + c/a+a/c + c/b+b/c)
Côsi cho từng cặp ta có: b/a+a/b ≥ 2 ; c/a+a/c ≥ 2 ; c/b+b/c ≥ 2
=> b/a+a/b + c/a+a/c + c/b+b/c ≥ 6
=> -(1/4)(b/a+a/b +c/a+a/c + c/b+b/c) ≤ -6/4 thay vào P ta có:
P ≤ 9/4 - 6/4 = 3/4 (đpcm) ; dấu "=" khi a = b = c hay x = y = z
cách này tuy biến đổi dài nhưng dễ hiểu)
------------
Cách khác:
P = x/(2x+y+z) -1 + y/(2y+z+x) -1 + z/(2z+x+y) - 1 + 3
= -(x+y+z)/(2x+y+z) -(x+y+z)/(2y+z+x) -(x+y+z)/(2z+x+y) + 3
= -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] + 3
- - -
Côsi cho 3 số:
2x+y+z + 2y+z+x + 2z+x+y ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y)
=> 4(x+y+z) ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) (1*)
Côsi cho 3 số:
1/(2x+y+z)+1/(2y+z+x)+1/(2z+x+y) ≥ 3³√1/(2x+y+z)(2y+z+x)(2z+x+y) (2*)
Lấy (1*) *(2*) ta có:
4(x+y+z)[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≥ 9
=> -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≤ -9/4
thay vào P ta có:
P ≤ -9/4 + 3 = 3/4 (đpcm) ; dấu "=" khi x = y = z