tìm x>0 , y>0 thỏa mãn x+y=3 và \(\frac{1}{x}+\frac{4}{y}< hoặc=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
\(A=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{x.\frac{4}{9x}}+2\sqrt{y.\frac{4}{9y}}+\frac{20}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{4}{3}+\frac{20}{12}=\frac{13}{3}\)
Dấu "=" xảy ra khi \(x=y=\frac{2}{3}\)
Trước tiên chứng minh:
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)
Áp dụng bài toán được
\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)
Lời giải :
Do \(VT\ge0\forall x;y\)nên ta có hệ :
\(\hept{\begin{cases}\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x=0\\1,5-\frac{11}{17}+\frac{23}{13}y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{9}\\y=\frac{-377}{782}\end{cases}}\)
Vậy...
Sửa đề.
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(\frac{1}{x}+\frac{4}{y}=\frac{1}{x}+\frac{2^2}{y}\ge\frac{\left(1+2\right)^3}{x+y}=\frac{9}{3}=3\)
Dấu " = " xảy ra <=> x=1; y=2