K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

            .....................

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

Đặt \(B=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

           \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

             \(=\frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

14 tháng 5 2019

\(\text{Ta có: }n^2>n^2-1=\left(n-1\right)\left(n+1\right)\)

\(\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}\)

Vậy .............

13 tháng 5 2019

\(n^2>\left(n-1\right)\left(n+1\right)\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).\) 

 Do đó:   \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2012.2014}+\frac{1}{2013.2015}=\) 

\(=\frac{1}{2}[1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2015}]=\) 

\(=\frac{1}{2}[1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{1}{2}[\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}.\)

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

19 tháng 10 2015

nhân A với 2:

Lấy A.2-A và ra A=1-(1/2)^2014<1

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lời giải:

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}$

$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}$

$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2014-2013}{2013.2014}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}$

$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo)

10 tháng 5 2019

\(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

.......................................

\(\frac{1}{2014^2}=\frac{1}{2014\cdot2014}< \frac{1}{2013\cdot2014}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2013\cdot2014}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow A< 1-\frac{1}{2014}=\frac{2013}{2014}\)

10 tháng 5 2019

Trần Nhật Dương    Chứng minh \(A< \frac{3}{4}\) mà :)) 

21 tháng 2 2017

\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)

\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)

\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)

\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)

\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)

21 tháng 2 2017

=> 5A = 1 + 1/5 +...+1/5^2013

=>4A= 1- 1/5^2014

=> 4A< 1 => A < 1/4

15 tháng 4 2015

sai vì cậu không biết tính