K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)

\(\Leftrightarrow\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=0\)

\(\Leftrightarrow\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\Rightarrowđpcm\)

30 tháng 4 2020

Kiểm tra lại  đề nhé!

Thay các số a = 1; b = 2; c = 3 vào thấy không thỏa mãn.

21 tháng 7 2018

 Ta có: 
1/a + 1/b + 1/c=1 / (a + b + c) 
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0 
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau) 
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0. 
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0 
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0 
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0 
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0 
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)

21 tháng 7 2018

Theo bài ra ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)( vì \(a=-b\))

\(b+c=0\)(vì \(b=-c\))

\(c+a=0\)( vì c=-a )

22 tháng 7 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{ac+bc+c^2}\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

<=> a +  b = 0 hoặc b + c = 0 hoặc c + a = 0

<=> a = -b hoặc b = -c hoặc c = -a

Vậy...

22 tháng 7 2018

Ta có : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)

\(\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

9 tháng 8 2019

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

25 tháng 3 2020

Ta có : \(\frac{b-c}{\left(a-b\right)\left(a+c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-\left(a-b\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{-\left(b-c\right)+\left(b-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{-\left(c-a\right)+\left(c-b\right)}{\left(c-a\right)\left(c-b\right)}\)

\(=-\frac{1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

15 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)

\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)

\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)

\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)

\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)

\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)

\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Do đó trong a , b , c luôn có 2 số đối nhau.

Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)

\(\Rightarrow a^n=-b^n\)(Vì n lẻ )

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

Vậy ...