Chứng minh rằng :
d. 24^54 . 54^24. 2^10 chia hết cho 7263
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{24}\cdot45⋮45\)
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
\(24^{54}.54^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\)
Lại có :
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)
\(=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)
a. 87 - 218 = 221 - 218 = 217 ( 24 - 2) = 217 ( 16-2) = 217 * 14 chia het cho 14
b. 55 - 54 + 53 = 53 ( 52 - 5 + 1) = 53 * 21 chia het cho 7
con nhung bai lai ban tu giai nhe , con neu thac mac hoi ban
\(24^{54}\cdot54^{24}\cdot2^{10}\)
\(=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^{10}\)
\(=2^{196}\cdot3^{126}\)