K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=\)\(1\)

\(\hept{\begin{cases}\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\end{cases}}\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}\hept{\begin{cases}a=b\\b=c\end{cases}}\\c=d\\d=a\end{cases}\Rightarrow}a=b=c=d}\)

18 tháng 2 2020

Rồi làm tiếp đi nhé

11 tháng 8 2016

Xin lỗi, mình bị nhầm, bài này của lớp 8.

11 tháng 8 2016

Xin lỗi, mình bị nhầm, bài này của lớp 8

16 tháng 7 2017

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)

        \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)

     \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)

Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

kinh quá

31 tháng 1 2017

Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )

\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )

Từ ( 1 ) và ( 2 ) cộng theo từng vế:

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)

\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)

\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)

Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)

5 tháng 2 2020

Áp dụng BĐT bunhiacopxki cho 2 bộ số \(\left(\sqrt{a}.\sqrt{b+c};\sqrt{b}.\sqrt{d+c};\sqrt{c}.\sqrt{d+a};\sqrt{d}.\sqrt{a+b}\right)\)

và \(\left(\frac{\sqrt{a}}{\sqrt{b+c}};\frac{\sqrt{b}}{\sqrt{d+c}};\frac{\sqrt{c}}{\sqrt{d+a}};\frac{\sqrt{d}}{\sqrt{a+b}}\right)\), ta được:

\(\left[a\left(b+c\right)+b\left(d+c\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)\(\left(\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\right)\)\(\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\)\(\ge\frac{\left(a+b+c+d\right)^2}{ab+ac+bd+bc+cd+ac+ad+bd}\)(1)

Ta có \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(luôn đúng)

Do đó: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)(2)

Từ (1) và (2) suy ra ĐPCM

Dấu "=" xảy ra khi và chỉ khi a=b=c=d

5 tháng 2 2020

Áp dụng BĐT : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với x,y > 0

Ta có : \(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)

Tương tự : \(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)

Cần chứng minh : \(\frac{a^2+b^2+c^2+d^2+ad+bc+ab+cd}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)

\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

Dấu "=" xảy ra khi a = c ; b = d

Vậy ....

20 tháng 9 2015

hoc24.net giúp em với

5 tháng 4 2020

Áp dụng tính chất tỉ số ta có: \(\frac{a+b+d}{a+b+c+d}>\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\left(1\right)\)

Tương tự: với b,c rồi cộng vế theo vế có ĐPCM