1) Cho \(A=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}.CMR:A< \frac{1}{9!}\)
2) \(CMR:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ai giúp mk sẽ đc thưởng 3 tick , phải ghi chép đầy đủ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé
\(a)\)Đặt \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm )
Vậy \(A< 1\)
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}
sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)
Đặt \(A=\frac{1}{9}+\frac{2}{8}+...+\frac{8}{2}+\frac{9}{1}\)
\(\Rightarrow A=\frac{1}{9}+\frac{2}{8}+\frac{3}{7}+...+\frac{8}{2}+\left(1+1+...+1\right)\left(9cs1\right)\)
\(\Rightarrow A=\left(\frac{1}{9}+1\right)+\left(\frac{2}{8}+1\right)+...+\left(\frac{8}{2}+1\right)+1\)
\(\Rightarrow A=\frac{10}{9}+\frac{10}{8}+...+\frac{10}{2}+\frac{10}{10}\)
\(\Rightarrow A=10.\left(\frac{1}{2}+...+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
Mà \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{10}\right).x=A\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).x=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).10\)
\(\Rightarrow x=10\)
Vậy \(x=10\)
Ta có:
\(=\frac{6}{12}+\frac{6}{12}+\frac{20}{12}-\frac{9}{12}\)
\(=\frac{29}{12}\)
Hok tốt
Câu 2 sai đề, thử rồi