Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là đối xứng của H qua AB, N là đối xứng của H qua AC. a) Chứng minh AM = AN. b) Chứng minh M là đối xứng của N qua A
giúp mk với mk cần gấp ấ!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hôm nay sáng mồng hai tháng chín
Thủ đô hoa vàng nắng Ba Đình
Muôn triệu tim chờ chim vẫn nín
Bỗng vang lên tiếng hát ân tình
Hồ Chí Minh, Hồ Chí Minh
Người đứng trên đài lặng phút giây
Trông đàn con đó vẫy hai tay
Cao cao vầng trán ngời đôi mắt
Độc lập bây giờ mới thấy đây.
a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)
Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).
b) Áp dụng tính chất đối xứng trục ta có:
A H = A M , A 1 ^ = A 2 ^ và A K = A M , A 3 ^ = A 4 ^ .
Mà A 2 ^ + A 3 ^ = 900 Þ H, A, K thẳng hàng.
Lại có AH = AM = AK Þ H đối xứng với K qua A.
c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^ mà AM là đường trung tuyến.
Þ DABC vuông cân tại A.
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
a: Ta có: M và H đối xứng nhau qua AB
nên AB là đường trung trực của MH
Suy ra: AM=AH(1)
Ta có: N và H đối xứng nhau qua AC
nên AC là đường trung trực của NH
Suy ra: AN=AH(2)
từ (1) và (2) suy ra AM=AN