Cho đường tròn tâm O, hai đường kính AB và CD vuông góc với nhau. M là một điểm bất kì trên cung nhỏ AC. MD cắt CD tại I . MD cắt AB tại K chứng minh :
A) Tứ giác AMIO nội tiếp
B) MIC= MDB
C) DM. DK không phụ thuộc vào vi trí trên cung nhỏ của AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMB=1/2*180=90 độ
góc IOA+góc IMA=90+90=180 độ
=>IMAO nội tiếp
b: góc MIC=1/2(sđ cung MC+sđ cung DB)
=1/2(sđ cung MC+sđ cung CB)
=1/2*sđ cung MB
=góc MDB
c: Xét ΔDAK và ΔDMA có
góc DAK=góc DMA
góc ADK chung
=>ΔDAK đồng dạng với ΔDMA
=>DA^2=DK*DM
=>DK*DM ko phụ thuộc vào vị trí của M
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé
no no no no no no no no no no ko bít nha bạn hình như đề bài sai
nha nha nha nha nha nha nha nha nha nha tụi nghiệp con bứ