K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

30 tháng 6 2019

\(y=\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow yx^2-2x+2y-1=0\)(1)

Ta có: y thuộc miền giá trị của hàm số khi và chỉ khi (1) có nghiệm

Với: \(y=0\) thì x = -1/2

Với: \(y\ne0\) thì (1) có nghiệm khi: \(\Delta^'\ge0\)

 \(\Leftrightarrow1^2-y\left(2y-1\right)\ge0\)

\(\Leftrightarrow-2y^2+y+1\ge0\)

\(\Leftrightarrow2y^2-y-1\le0\)

\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Vậy: Min y = -1/2 và Max y = 1

=.= hk tốt!!

30 tháng 6 2019

\(y=\frac{2x+1}{x^2+2}\Leftrightarrow x^2y+2y-2x-1=0\)

Pt có nghiệm x<=>\(\Delta'=1-y\left(2y-1\right)=-2y^2+y+1\ge0\)\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Max y=1 \(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)

\(Miny=-\frac{1}{2}\Leftrightarrow-\frac{1}{2}x^2-2x-2=0\Leftrightarrow x=-2\)

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

22 tháng 7 2016

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

22 tháng 7 2016

Cảm ơn bn nha :))

31 tháng 1 2018

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

11 tháng 7 2016
  • TÌM MIN : 

Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x^2+2x+1\right)+\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)

Vậy Min = \(\frac{1}{3}\Leftrightarrow x=-1\)

  • TÌM MAX : 

Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{-2\left(x^2-2x+1\right)+3\left(x^2-x+1\right)}{x^2-x+1}=\frac{-2\left(x-1\right)^2}{x^2-x+1}+3\le3\)

Vậy Max = 3  <=> x = 1