K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

đề có sai không vậy bạn

26 tháng 7 2015

ko thiếu bạn ạ

k

22 tháng 7 2016

\(\text{Đặt C = 1.2 + 2.3 + 3.4 + ..... +98.99 }\)

\(\text{ Và A = 1.98 + 2.97 + 3.96 + .... + 98.1 }\)

\(\text{Khi đó : }A=1+\left(1+2\right)+....+\left(1+2+...+98\right)\)

                       \(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+....+\frac{98.99}{2}\)

                       \(=\frac{1.2+2.3+3.4+....+98.99}{2}=\frac{C}{2}\)

\(\Rightarrow B=\frac{C}{\frac{2}{C}}=\frac{1}{2}\)

8 tháng 3 2016

a)\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.98+2.97+3.96+....+98.1}\)

\(=\frac{\left(1+1+....+1\right)+\left(2+2+...2\right)+....+\left(97+97\right)+98}{ }\)

\(=\frac{1.98+2.97+3.96+....+97.2+98.1}{1.98+2.97+3.96+....+98.1}=1\)

1 tháng 1 2019

\(2\)

1 tháng 1 2019

or\(\frac{1}{2}\)

17 tháng 3 2016

B=\(\frac{1.\left(100-2\right)+2.\left(100-3\right)+3.\left(100-4\right)+...+98.\left(100-99\right)}{1.2+2.3+3.4+...+98.99}\)

B=\(\frac{100.\left(1+2+3+...+98\right)-\left(1.2+2.3+3.4+...+98.99\right)}{1.2+2.3+3.4+...+98.99}\)

B=\(\frac{100.\left(1+98\right).98:2}{1.2+2.3+3.4+...+98.99}-\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)

B=\(\frac{50.98.99}{1.2+2.3+3.4+...+98.99}\)

Đặt M = 1.2+2.3+3.4+....+98.99

=> 3M=3.(1.2+2.3+3.4+...+98.99)

=> 3M = 1.2.3+2.3.(4-1)+...+098.99.(100-97)

3M= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.100

3M=98.99.100

=> M = 98.33.100

=> B = \(\frac{50.98.99}{98.33.100}-1=\frac{3}{2}-1=\frac{1}{2}\)

17 tháng 3 2016

thanks

18 tháng 3 2021

Đặt A=1.98+2.97+3.96+...+96.3+97.2+98.1

       B=1.2+2,3+3.4+...+96.97+97.98+98.99

Ta có: A=1+(1+2)+...+(1+2+3+...+97+98)

              =\(\dfrac{1.2}{2}+\dfrac{2.3}{2}+...+\dfrac{98.99}{3}\)

              =\(\dfrac{1.2+2.3+3.4+4.5+...+98.99}{2}\)=\(\dfrac{B}{2}\)

    =>E=\(\dfrac{B}{2}\):2=\(\dfrac{1}{2}\)

22 tháng 7 2016

\(\text{Đặt C = 1.2 + 2.3 + 3.4 + ..... +98.99 }\)

\(\text{ Và A = 1.98 + 2.97 + 3.96 + .... + 98.1 }\)

\(\text{Khi đó : }A=1+\left(1+2\right)+....+\left(1+2+...+98\right)\)

                      \(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+....+\frac{98.99}{2}\)

                      \(=\frac{1.2+2.3+3.4+....+98.99}{2}=\frac{C}{2}\)

\(\Rightarrow B=\frac{B}{\frac{2}{B}}=\frac{1}{2}\)