K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Lời giải:

a)

\(HM\perp AB; HN\perp AC\Rightarrow \widehat{HMA}=\widehat{HNA}=90^0\)

Xét tứ giác $AMHN$ có tổng 2 góc đối \(\widehat{HMA}+\widehat{HNA}=90^0+90^0=180^0\) nên $AMHN$ là tứ giác nội tiếp (đpcm)

b)

Vì $AMHN$ nội tiếp \(\Rightarrow \widehat{AMN}=\widehat{AHN}\)

\(\widehat{AHN}=\widehat{ACB}(=90^0-\widehat{NHC})\)

\(\Rightarrow \widehat{AMN}=\widehat{ACB}\)

Xét tam giác $AMN$ và $ACB$ có:

\(\left\{\begin{matrix} \widehat{A}-\text{chung}\\ \widehat{AMN}=\widehat{ACB}(cmt)\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ACB(g.g)\)

\(\Rightarrow \frac{AM}{AC}=\frac{AN}{AB}\Rightarrow AM.AB=AC.AN\) (đpcm)

c)

Ta có: \(\widehat{ACB}=\widehat{AEB}\) (góc nội tiếp chắn cung $AB$)

\(\widehat{ACB}=\widehat{AMN}\) (cmt)

\(\Rightarrow \widehat{AEB}=\widehat{AMN}\)

\(\Leftrightarrow \widehat{IEB}=180^0-\widehat{BMI}\)

\(\Leftrightarrow \widehat{IEB}+\widehat{BMI}=180^0\), do đó tứ giác $BMIE$ nội tiếp

\(\Rightarrow \widehat{MIE}=180^0-\widehat{MBE}=180^0-90^0=90^0\) (\(\widehat{MBE}=\widehat{ABE}=90^0\) vì là góc nt chắn nửa đường tròn)

\(\Rightarrow MN\perp AE\) . Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Hình vẽ:

Góc với đường tròn

30 tháng 5 2021

xét ΔMDC và ΔMBD có

∠M chung

∠MBD=∠MDC=\(\dfrac{1}{2}sđ\stackrel\frown{DC}\)

⇒ΔΔMDC ∼ ΔMBD (g.g)

\(\dfrac{MD}{MB}=\dfrac{MC}{MD}\)⇒MD2=MC.MB

21 tháng 3 2021

a, Ta có: $HM⊥AB;HN⊥AC$

$⇒\widehat{HMA}=\widehat{HNA}=90^o$

$⇒\widehat{HMA}+\widehat{HNA}=180^o$

$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)

Nên $AH^2=AM.AB(1)$

Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)

Nên $AH^2=AN.AC(2)$

Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$

Xét tam giác $AMN$ và tam giác $ACB$ có:

$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung

$⇒$  tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$

(đpcm)

c,  tam giác $AMN$ $\backsim$ tam giác $ACB$

$⇒\widehat{ANM}=\widehat{ABC}$

Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)

Nên $\widehat{ANM}=\widehat{AEC}$

Hay  $\widehat{ANI}=\widehat{IEC}$

$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)

c, Ta có: $\widehat{ANM}=\widehat{ABC}$

Mà $\widehat{ABC}+\widehat{AKC}=180^o$

do tứ giác $ABCK$ nội tiếp $(O)$

Nên $\widehat{ANM}+\widehat{AKC}=180^o$

Mà $\widehat{ANM}+\widehat{ANK}=180^o$

Nên $\widehat{AKC}=\widehat{ANK}$

Xét tam giác $AKC$ và tam giác $ANK$ có:

$\widehat{AKC}=\widehat{ANK}$

$\widehat{A}$ chung

nên  tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$

$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$

$⇒AK^2=AN.AC$

mà $AH^2=AN.AC(cmt)$

$⇒AK^2=AH^2$

hay $AK=AH$

suy ra tam giác $AHK$ cân tại $A$undefined

 

21 tháng 3 2021

Nguyễn Lê Phước Thịnh

Akai Haruma     Trần Đức Mạnh  Nguyễn Việt Lâm

9 tháng 5 2021

giúp mình câu b với các bạn ơi