K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

A=\(\frac{1}{3}\)+\(\frac{1}{8}\)+\(\frac{1}{15}\)+\(\frac{1}{24}\)+\(\frac{1}{35}\)+\(\frac{1}{48}\)+\(\frac{1}{63}\)+\(\frac{1}{80}\)

A=\(\frac{1}{2}\)(\(\frac{1}{1\cdot3}\)+\(\frac{1}{2\cdot4}\)+\(\frac{1}{3\cdot5}\)+\(\frac{1}{4.6}\)+\(\frac{1}{5.7}\)+\(\frac{1}{6.8}\)+\(\frac{1}{7.9}\)+\(\frac{2}{8.10}\))

A=\(\frac{1}{2}\)(1-1/3 +1/2-1/4 + 1/3 -1/5 +1/4-1/6 +1/5 - 1/7 +1/6 -1/8 +1/7 - 1/9 +1/8 - 1/10)

A= \(\frac{1}{2}\)(1 + 1/2 -1/9 -1/10)

A=\(\frac{29}{45}\)

\(\dfrac{1}{4}+\dfrac{1}{10}+\dfrac{1}{18}+\dfrac{1}{28}+\dfrac{1}{40}+\dfrac{1}{54}+\dfrac{1}{70}\)

\(=\left[\dfrac{1}{4}+\dfrac{1}{28}\right]+\left[\dfrac{1}{10}+\dfrac{1}{40}\right]+\left[\dfrac{1}{18}+\dfrac{1}{70}\right]\)

\(=\dfrac{2}{7}+\dfrac{6}{7}+\dfrac{1}{7}\)

\(=\dfrac{9}{7}\)

Chúc bạn học tốt nhé.

4 tháng 4 2022

300

7 tháng 5 2022

\(\dfrac{1}{4}+\dfrac{1}{10}+\dfrac{1}{18}+\dfrac{1}{28}+\dfrac{1}{40}+\dfrac{1}{54}+\dfrac{1}{70}\)

\(=\dfrac{539}{1080}\)

5 tháng 5 2022

2a= 2/3+2/8+2/15+2/24+2/35+2/48+2/63+2/80= [2/( 1*3)+2/( 3*5)+2/( 5*7)+2/( 7*9)]+[2/(2*4)+2/(4*6)+2/(6*8)+2/(8*10)]= [1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9]+[1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10]= [1/1-1/9]+[1/2-1/10]= 8/9+2/5= 58/45 =>a= 29/45

DD
9 tháng 7 2021

\(A=\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)

\(=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)

\(=\frac{1}{2}\times\left[\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\right)+\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+\frac{2}{8\times10}\right)\right]\)

\(=\frac{1}{2}\times\left[\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}\right)+\left(\frac{4-2}{2\times4}+\frac{6-4}{4\times6}+\frac{8-6}{6\times8}+\frac{10-8}{8\times10}\right)\right]\)

\(=\frac{1}{2}\times\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\right]\)

\(=\frac{1}{2}\times\left[\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)

\(=\frac{29}{45}\)

Đáp án :

\(\frac{29}{45}\)

Đúng thì k nhé ^ ^

12 tháng 5 2019

\(\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)

\(=\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)+\left(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}\right)\)

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}=\frac{1}{2}\left(\frac{8}{9}+\frac{2}{5}\right)=\frac{1}{2}.\frac{58}{45}=\frac{29}{45}\)

9 tháng 7 2015

Bít rồi sao còn tạo câu hỏi?

9 tháng 7 2015

a) n(n+2)

 b) (3n-2)3n 

c) ( 1) 1 n n  2 

d) 1+n2 e) n(n+5) 

f) (3n-2)(3n+1) 

g) n ( n  3) 2 n  n  

h) ( 1)( 2) 2

 i) n ( n  1)( n  2)

 

24 tháng 4 2016

A= \(\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)

A= \(\frac{2}{2}.\left(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\right)\)

A=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{9}+\frac{1}{2}-\frac{1}{10}\right)\)

A= tự tính