Chứng minh tam giác ABC đều nếu
\(\cos A+\cos B+\cos C+\cos2A+\cos2B+\cos2C=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2}cos\left(2a+2b\right)+\frac{1}{2}+\frac{1}{2}cos\left(2a-2b\right)-cos2a.cos2b\)
\(=1+\frac{1}{2}\left[cos\left(2a+2b\right)+cos\left(2a-2b\right)\right]-cos2a.cos2b\)
\(=1+cos2a.cos2b-cos2a.cos2b\)
\(=1\)