K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

bn cho thiếu đề rồi

19 tháng 11 2017

a= 3857295

b=3857296

26 tháng 11 2017

a=1964.1965=3859260

b=1964.1964=3857296

Vì: 3859260>3857296

=>a>b

a=1234.1238=1527692

b=1236.1236=1527696

Do hàng đ v của a=2<b=6

=>a<b

26 tháng 11 2017

a = 1963 x 1965

b = 1964 x 1964

Ta có:

b = ( 1963 + 1 ) x ( 1965 - 1 )

b = 1963 x 1965 - 1

Mà 1963 x 1965 > 1963 x 1965 - 1

Vậy a > b

Tương tự 

9 tháng 3 2017

Sửa đề: \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7

Ta có:

\(1961\text{≡}\left(mod7\right)\Rightarrow1961^{1962}\text{≡}1\left(mod7\right)\left(I\right)\)

Ta có:

\(3^6\text{≡}1\left(mod7\right)\Rightarrow\left(3^6\right)^{327}\text{≡}1\left(mod7\right)\)

\(\Rightarrow9.\left(3^6\right)^{327}\text{≡}9\text{≡}2\left(mod7\right)\Rightarrow3^{1964}\text{≡}2\left(mod7\right)\)

Mà \(1963\text{≡}3\left(mod7\right)\Rightarrow1963^{1964}\text{≡}3^{1964}\text{≡}2\left(mod7\right)\left(II\right)\)

Ta có: 

\(1965\text{≡}5\left(mod7\right)\Rightarrow1965^{1966}\text{≡}5^{1966}\left(mod7\right)\)

Mà ta lại có: \(\hept{\begin{cases}5^6\text{≡}1\left(mod7\right)\\5^4\text{≡}2\left(mod7\right)\end{cases}\Rightarrow}\left(5^6\right)^{327}.5^4=5^{1966}\text{≡}2\left(mod7\right)\)

\(\Rightarrow1965^{1966}\text{≡}5^{1966}\text{≡}2\left(mod7\right)\left(III\right)\)

Từ (I), (II), (III) thì ra suy ra:

\(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}\left(1+2+2+2\right)\left(mod7\right)\)

Hay \(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}7\text{≡}0\left(mod7\right)\)

Vậy \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7

9 tháng 3 2017

Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) Cộng lại ta có S ≡ 14 ≡ 0 (mod 7) Hay ta có đpcm

13 tháng 6 2015

Bạn học đồng dư thức chưa? 
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) 
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) 
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) 
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) 
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) 
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7) 
Hay ta có đpcm

 

10 tháng 1 2017

o,to nghi dai lam

12 tháng 4 2022

Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) 
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) 
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) 
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) 
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) 
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)