tinh S=1/2+(1/2)^2+....+(1/2)^99
tinh B=(-1/7)^0+(-1/7)^2+...+(-1/7)^2007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
\(A=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+...+\left(-\dfrac{1}{7}\right)^{2007}\)
\(\Leftrightarrow-\dfrac{1}{7}A=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2008}\)
\(\Leftrightarrow-\dfrac{8}{7}A=\left(-\dfrac{1}{7}\right)^{2008}-1=\dfrac{1}{7^{2008}}-1=\dfrac{1-7^{2008}}{7^{2008}}\)
\(\Leftrightarrow A=\dfrac{1-7^{2008}}{7^{2008}}\cdot\dfrac{-7}{8}=\dfrac{7^{2008}-1}{8\cdot7^{2007}}\)
\(A=\left(-\dfrac{1}{7}\right)^0+\left(\dfrac{-1}{7}\right)^1+...+\left(-\dfrac{1}{7}\right)^{2007}\)
\(\Leftrightarrow\left(-\dfrac{1}{7}\right)A=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2008}\)
\(\Leftrightarrow-\dfrac{8}{7}A=\left(-\dfrac{1}{7}\right)^{2008}-1\)
\(\Leftrightarrow A=\left(\dfrac{1}{7^{2008}}-\dfrac{7^{2008}}{7^{2008}}\right):\dfrac{-8}{7}=\dfrac{1-7^{2008}}{7^{2008}}\cdot\dfrac{-7}{8}=\dfrac{7^{2008}-1}{8\cdot7^{2007}}\)
a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
\(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\\ S=\dfrac{\left(-1\right)^0}{7^0}+\dfrac{\left(-1\right)^1}{7^1}+\dfrac{\left(-1\right)^2}{7^2}+...+\dfrac{\left(-1\right)^{2017}}{7^{2017}}\\ S=\dfrac{1}{7^0}+\dfrac{-1}{7^1}+\dfrac{1}{7^2}+...+\dfrac{-1}{7^{2017}}\\ -7S=\dfrac{-7}{7^0}+\dfrac{7}{7^1}+\dfrac{-7}{7^2}+...+\dfrac{7}{7^{2017}}\\ -7S=\left(-7\right)+\dfrac{1}{7^0}+\dfrac{-1}{7^1}+...+\dfrac{1}{7^{2016}}\\ -7S-S=\left[\left(-7\right)+\dfrac{1}{7^0}+\dfrac{-1}{7^1}+...+\dfrac{1}{7^{2016}}\right]+\left(\dfrac{1}{7^0}+\dfrac{-1}{7^1}+\dfrac{1}{7^2}+...+\dfrac{-1}{7^{2017}}\right)\\ -8S=\left(-7\right)+\dfrac{-1}{2017}\\ -8S=-\left(7+\dfrac{1}{2017}\right)\\ 8S=7+\dfrac{1}{2017}\\ S=\dfrac{7+\dfrac{1}{2017}}{8}\)
Vậy ...
S= \(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\)
\(\left(-\dfrac{1}{7}\right)S=\left(-\dfrac{1}{7}\right)\left(-\dfrac{1}{7}+-\dfrac{1^2}{7}+..+-\dfrac{1^{2007}}{7}\right)\)
= \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\)
=>\(-\dfrac{1}{7}S-S=\) \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\) \(-\)\(\left(1+-\dfrac{1}{7}+-\dfrac{1^2}{7}+...+-\dfrac{1^{2007}}{7}\right)\)
=> \(-\dfrac{1}{7}S=\) \(\dfrac{-1^{2008}}{7}-1\)
=> S= \(\dfrac{-1^{2008}}{7}-1\) : \(\dfrac{-1}{7}\)
S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
1/7S=(-1/7)^1+...+(-1/7)2018
1/7S-S=(-1/7)^1+....+(-1/7)^2018-(-1/7)^0-...-(-1/7)^2017
-6/7S=(-1/7)^2018-1=(-1/7)^2018-1:-6/7