K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

Đặt \(A=x+y+\dfrac{1}{x}+\dfrac{1}{y}\)

\(\Leftrightarrow A=x+y+\dfrac{4}{4x}+\dfrac{4}{4y}\)

\(\Leftrightarrow A=x+y+\dfrac{1}{4x}+\dfrac{3}{4x}+\dfrac{1}{4y}+\dfrac{3}{4y}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\left(\dfrac{3}{4x}+\dfrac{3}{4y}\right)\)

\(\Rightarrow A\ge2\sqrt{x.\dfrac{1}{4x}}+2\sqrt{y.\dfrac{1}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\)

\(\ge2.\sqrt{\dfrac{1}{4}}+2\sqrt{\dfrac{1}{4}}+\dfrac{3}{4}.\dfrac{4}{1}\)

\(=2.\dfrac{1}{2}+2.\dfrac{1}{2}+3=1+1+3=5\)

Vậy ta có đpcm. Dấu"=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4x}\\y=\dfrac{1}{4y}\\x=y\\x+y=1\end{matrix}\right.\) \(\Leftrightarrow x=y=\dfrac{1}{2}\left(tm\right)\)

Đặt \(A=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{9}{9x}+\dfrac{9}{9y}+\dfrac{9}{9z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{1}{9x}+\dfrac{8}{9x}+\dfrac{1}{9y}+\dfrac{8}{9y}+\dfrac{1}{9z}+\dfrac{8}{9z}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\left(\dfrac{8}{9x}+\dfrac{8}{9y}+\dfrac{8}{9z}\right)\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\dfrac{8}{9}.\left(\dfrac{1^2}{x}+\dfrac{1^2}{y}+\dfrac{1^2}{z}\right)\)

\(\Rightarrow A\ge2\sqrt{x.\dfrac{1}{9x}}+2\sqrt{y.\dfrac{1}{9y}}+2\sqrt{z.\dfrac{1}{9z}}+\dfrac{8}{9}.\dfrac{\left(1+1+1\right)^2}{x+y+z}\)

\(\Rightarrow A\ge2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.\dfrac{3^2}{1}\)

\(\Rightarrow A\ge2.\dfrac{1}{3}.3+8=2+8=10\)

Vậy ta có BĐT cần chứng minh.

Dấu\("="\) xảy ra\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

 

28 tháng 2 2021

Áp dụng bđt Cô-si vào 2 số dương có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)

Dấu = xảy ra \(\Leftrightarrow x=y=4\)

28 tháng 2 2021

`1/x+1/y>=2/(\sqrt{xy})`

`<=>1/2>=2/(\sqrt{xy})`

`<=>\sqrt{xy}>=4`

`=>\sqrt{x}+\sqrt{y}>=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

6 tháng 4 2021

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)

\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)

pro ghê ta yeu

12 tháng 4 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)

Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)

Đẳng thức xảy ra <=> x = 2 ; y = z = 1

1 tháng 9 2021

Cũng là áp dụng BĐT Cosi nhưng còn cách dễ hơn nhiều

NV
11 tháng 3 2021

\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xảy ra khi \(x=y=4\)

26 tháng 3 2022

không làm đc thì đừng có vào.

26 tháng 3 2022

không làm đc thì đừng có vào.