tìm x 1/10+1/40+...+1/(3x+2).(3x+5)=4/25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{\left(3x+2\right).\left(3x+5\right)}=\frac{4}{25}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(3x+2\right).\left(3x+5\right)}=\frac{4}{25}\)
\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{3x+2}-\frac{1}{3x+5}\right)=\frac{4}{25}\)
\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3x+5}\right)=\frac{4}{25}\)
\(\frac{1}{2}-\frac{1}{3x+5}=\frac{12}{25}\)
\(\frac{1}{3x+5}=\frac{1}{50}\)
=> 3x+5 = 50
3x = 45
x = 15
1) \(\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\)
\(\Leftrightarrow25x^2-1=25x^2-7x+15\)
\(\Leftrightarrow7x=16\Leftrightarrow x=\dfrac{16}{7}\)
2) \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Leftrightarrow5x=0\Leftrightarrow x=0\)
a/ (3x - 1).(1/2.5) = 0 => 3x - 1 = 0 => 3x = 1 => x = 1/3
b/ 1/4 + 1/3 : (2x - 1) = 5 => 1/3 : (2x - 1) = 19/4 => 2x - 1 = 4/57 => 2x = 61/57 => x = 61/114
c/ (2x + 2/5)2 - 9/25 = 0 => (2x + 2/5)2 = 9/25 => 2x + 2/5 = 3/5 => 2x = 1/5 => x = 1/10
hoặc 2x + 2/5 = -3/5 => 2x = -1 => x = -1/2
Vậy x = {1/10 ; -1/2}
d/ (3x - 1/2)3 + 1/9 = 0 => (3x - 1/2)3 = -1/9 => 3x - 1/2 = -1/3 => 3x = 1/6 => x = 1/18