K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Ta có: \(\hept{\begin{cases}x^{2019}\le x^{2020}\\y^{2019}\le y^{2020}\end{cases}}\)

\(\Rightarrow x^{2019}+y^{2019}\le x^{2020}+y^{2020}\)

( em ko biết đúng hay sai làm theo cách hiểu của em thôi ) 

22 tháng 10 2019

   1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10  chia hết cho 125 = 102510 chia hết cho 125 

Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b

   1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9

   2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24

   Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc  

17 tháng 11 2017

vd:m nằm giữa hai điểm n và e vì mn<me

17 tháng 11 2017

ừm

Nếu AM + MB = AB thì M nằm giữa A và B

AM và MB phải đối nhau

Mình nhớ mang máng thế!

3 tháng 9 2018

(Bạn tự vẽ hình giùm)

Ta có \(\widehat{KAB}=\widehat{AKD}\)(AB // CD; so le trong)

Mà \(\widehat{KAB}=\widehat{DAK}\)(AK là tia phân giác của \(\widehat{A}\))

=> \(\widehat{AKD}=\widehat{DAK}\)

=> \(\Delta ADK\)cân tại D

nên AD = DK (1)

Chứng minh tương tự, ta cũng có: \(\Delta BKC\)cân tại C

nên BC = KC (2)

Lấy (1) cộng (2)

=> AD + BC = DK + KC

Mà \(K\in CD\)(gt)

=> D, K, C thẳng hàng

=> AD + BC = DC (đpcm)

21 tháng 6 2017

Co Gai De Thuong

A = 2 + 22 + 23 + ... + 299 + 2100

   = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

   = 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x  ( 1 + 2 + 22 + 23 + 2)

   = 2 x      31                          + ... +  296 x 31

   = 31 ( 2 + ... + 296 )

Vậy A chia hết cho 31       

21 tháng 6 2017

A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100

A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]

A = 62 + ... + 295.62

A = 2.31 + .... + 295.2.31

A = 31.2.[20 + 25 + ... +295]

=> A \(⋮31\)

1 tháng 7 2018

Hazz suy nghĩ nãy h ko được cách nào -_- làm tạm đi 

* Nếu x và y chẵn : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+2m-1000\right|.\left(2n-2m-1017\right)\)

\(A=2\left|n+m-1000\right|.\left(2n-2m-1017\right)⋮2\)

Vậy A là số chẵn 

* Nếu x chẵn và y lẻ : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+2m+1-1000\right|.\left(2n-2m-1-1017\right)\)

\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\)

Lại có : 

\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ \(\left(1\right)\) ( chẵn trừ lẻ = lẻ ) 

\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1018\) chẵn \(\left(2\right)\) ( chẵn trừ chẵn = chẵn ) 

Từ (1) và (2) suy ra \(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\) chẵn ( lẻ nhân chẵn = chẵn ) 

Vậy A là số chẵn 

* Nếu x lẻ và y chẵn : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+1+2m-1000\right|.\left(2n+1-2m-1017\right)\)

\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\)

Lại có : 

\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ ( chẵn trừ lẻ = lẻ ) \(\left(3\right)\)

\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1016\) chẵn ( chẵn trừ chẵn = chẵn ) \(\left(4\right)\)

Từ (3) và (4) suy ra \(\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\) chẵn ( lẻ nhân chẵn = chẵn ) 

Vậy A là số chẵn 

* Nếu x và y lẻ : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+1+2m+1-1000\right|.\left(2n+1-2m-1-1017\right)\)

\(A=\left|2n+2m-998\right|.\left[2\left(n-m\right)-1017\right]\)

\(A=2\left|n+m-499\right|.\left[2\left(n-m\right)-1017\right]⋮2\)

Vậy A là số chẵn 

Từ 4 trường hợp trên ta suy ra A là số chẵn với mọi x, y là số nguyên 

Vậy A là số chẵn \(\forall x,y\inℤ\)

Chúc bạn học tốt ~ 

11 tháng 8 2016

Đề sai: \(x^2=bc\) phải là \(a^2=bc\)

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)

\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)

\(\Rightarrow a-ka=-b-kb\)

\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1) 

Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)

\(\Rightarrow c-kc=-a-ka\)

\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\)  ( 2)

Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)

                   \(\Rightarrow a^2=bc\left(đpcm\right)\)

11 tháng 8 2016

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(k\)nhé !!!

23 tháng 7 2018

Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2

Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2

 => (n+3) (n+6) chia hết cho 2 với mọi STN n

23 tháng 7 2018

Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều . 

Thank you very very much .

Kết bạn nhé .