K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left(x;y-3\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;20\right);\left(17;4\right);\left(-1;-14\right);\left(-17;2\right)\right\}\)

b: \(\Leftrightarrow\left(x-1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;5\right);\left(8;-1\right);\left(0;-9\right);\left(-6;-3\right)\right\}\)

c: =>(y+1)(3x+1)=7

=>\(\left(3x+1;y+1\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(2;0\right)\right\}\)

24 tháng 11 2021

\(a.-7< x< -1\\ x\in\left\{-6;-5;-4;-3;-2\right\}\\ \Rightarrow\left(-6\right)+\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)\\ =-20\)

\(b.-1\le x\le6\\ x\in\left\{-1;0;1;2;3;4;5;6\right\}\\ \Rightarrow\left(-1\right)+0+1+2+3+4+5+6\\ =20\)

\(c.-5\le x< 6\\ x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\\ \Rightarrow-5-4+-3+-2+-1+0+1+2+3+4+5\\ =0\)

 

câu a thừa -1 rồi chj ơi

28 tháng 11 2021

\(a,x\in\left\{-2;-1;0;1\right\}\\ \Rightarrow\text{Tổng là }-2-1+0+1=-2\\ b,x\in\left\{-2020;-2019;...;2020\right\}\\ \Rightarrow\text{Tổng là }-2020-2019-...-0+1+...+2020\\ =\left(-2020+2020\right)+\left(-2019+2019\right)+...+\left(-1+1\right)-0=0\)

28 tháng 11 2021

thanks

thoả mãn cái j cer.-.

13 tháng 12 2021

Thấy cái đề nó thế thôi

a: y'=2/3*3x^2-2x(m+1)+3(m+1)

=x^2-x(2m+2)+3m+3

y'=0

Δ=(2m+2)^2-4(3m+3)=4m^2+8m+4-12m-12=4m^2-4m-8

Để phương trình có hai nghiệm thì 4m^2-4m-8>=0

=>m^2-m-2>=0

=>m>=2 hoặc m<=-1

b: y'=0 có hai nghiệm trái dấu

=>3m+3<0

=>m<-1

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)