Tính giá trị của biểu thức:
\(A=\frac{5}{2}+\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+\frac{5}{42}+\frac{5}{56}+\frac{5}{72}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+...+\frac{5}{90}\)( viết tắt )
\(I=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{9.10}\)
\(I=5\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(I=5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(I=5\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(I=5\times\frac{2}{5}\)
\(I=2\)
Vậy \(I=2\)
Tk nha bn ~~
\(I=\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+\frac{5}{42}+\frac{5}{56}+\frac{5}{72}+\frac{5}{90}\)
\(I=\frac{5}{2\cdot3}+\frac{5}{3\cdot4}+\frac{5}{4\cdot5}+\frac{5}{5\cdot6}+\frac{5}{6\cdot7}+\frac{5}{7\cdot8}+\frac{5}{8\cdot9}+\frac{5}{9\cdot10}\)
\(I=5\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)
Theo tính chất của toán HSG lớp 6, ta được
\(I=5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(I=5\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(I=5\left(\frac{5}{10}-\frac{1}{10}\right)\)
\(I=5\cdot\frac{4}{10}=5\cdot\frac{2}{5}=\frac{10}{5}=2\)
=> A = ( 1 - 1/2 ) + ( 1 - 1/6 ) + ( 1 - 1/12 ) + ( 1 - 1/30 ) + .... + ( 1 - 1/90 )
=> A = ( 1 + 1 + 1 + .... 1 ) - ( 1/2 + 1/6 + 1/12 + 1/30 + .... + 1/90 )
=> A = 9 - ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + .... + 1/9.10 )
=> A = 9 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10 )
=> A = 9 - ( 1 - 1/10 )
=> A = 9 - 9/10
=> 81/10
A=1-1/2+1-1/6+...+1-1/90
=9-(1/2+1/6+...+1/90) =9-(1/1.2+1/2.3+...+1/9.10)
=9-(1-1/10)=9-9/10=81/10
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{7}{60}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=1+1+...+1-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)=9-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9-\left(1-\frac{1}{10}\right)=9-1+\frac{1}{10}=8\frac{1}{10}\)
=(1-1/2)+(1-1/6)+(1-1/12)+...+(1-1/90)
=9-(1/2 + 5/6 + 1/12 + ... + 1/90)
=9-(1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10)
=9-(1-1/10)
=9-9/10=81/10
Đây nha! Tick cho mik nhé! Chỗ mik xuống dòng là viết tiếp đó!
À quên thiếu. Đây mới đúng.