K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Violympic toán 7

a) C/m ΔAHP = ΔAHQ

Xét ΔvAHP và ΔvAHQ có:

AH cạnh huyền chung

\(\widehat{PAH}=\widehat{QAH}\) (ΔABC cân thì AH là đường cao cũng là đường phân giác)

Do đó: ΔvAHP = ΔvAHQ (ch-gn)

b) C/m PQ || BC

Ta có: AH ⊥ BC (1)

Và: AP = AQ (ΔvAHP = ΔvAHQ)

=> A nằm trên đường trung trực của PQ

HP = HQ (ΔvAHP = ΔvAHQ)

=> H nằm trên đường trung trực của PQ

Do đó: AH là đường trung trực của PQ

=> AH ⊥ PQ (2)

Từ (1) và (2) => PQ || BC (hai đường thẳng cùng vuông góc với đường thẳng thứ 3 thì song song)

25 tháng 3 2018

\(a)\)xét\(\Delta ABH\)\(\Delta ACH\)có:

\(\widehat{AHC}=\widehat{AHB}=90^o\)(vì\(AH\)là đường cao của \(\Delta ABC\))

\(AB=AC\)(vì \(\Delta ABC\)cân)

\(\widehat{ABC}=\widehat{ACB}\)(vì\(\Delta ABC\)cân)

\(\Rightarrow\Delta ABH=\Delta ACH\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(2 cạnh tương ứng)

Xét \(\Delta AHP\)\(\Delta AHQ\)có:

\(AH\)chung

\(\widehat{APH}=\widehat{AQH}=90^o\)(vì\(HP\perp AB\equiv P\)và \(HQ\perp AC\equiv Q\))

\(\widehat{BAH}=\widehat{CAH}\)(chứng minh trên)

\(\Rightarrow\Delta AHP=\Delta AHQ\)(cạnh huyền-góc nhọn)

\(b)\)Gọi giao điểm của PQ và AH là I

Xét \(\Delta AIP\)và \(\Delta AIQ\)có:

\(\widehat{BAH}=\widehat{CAH}\)(vì\(\Delta AHB=\Delta AHC\))

\(AI\)chung

\(AP=AQ\)(vì \(\Delta AHP=\Delta AHQ\))

\(\Rightarrow\Delta AIP=\Delta AIQ\)(c.g.c)

\(\Rightarrow\widehat{AIP}=\widehat{AIQ}\)(2 cạnh tương ứng)

\(\widehat{AIP}+\widehat{AIQ}=180^o\)(vì kề bù)

\(\Rightarrow\widehat{AIP}=\widehat{AIQ}=\frac{180^o}{2}\)\(=90^o\)

\(\Rightarrow AH\perp PQ\)

\(AH\perp BC\)(vì \(AH\)là đường cao của \(\Delta ABC\))

\(\Rightarrow PQ//BC\)(vì cùng \(\perp AH\))

chúc ngươi học tốt !

1 tháng 5 2019

ko ai làm ý c à

mình đang cần bạn nào giúp mình với

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

 

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

 

Bạn ghi lại đề câu c nha

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

a: Xét tứ giác APNQ có

góc APN=góc AQN=góc PAQ=90 độ

nên APNQ là hình chữ nhật

=>AN=PQ

b: AQNP là hình chữ nhật

nên AN cắt QP tại trung điểm của mỗi đường

=>I là trung điểm chung của QP và AN

ΔAMN vuông tại M

mà MI là trung tuyến

nên MI=AN/2=PQ/2

Xét ΔMPQ có

MI là trung tuyến

MI=PQ/2

Do đó: ΔMPQ vuông tại M

a: Xét tứ giác AQHP có

AQ//HP

AP//HQ

=>AQHP là hình bình hành

Xet ΔAHQ và ΔHAP có

HA chung

HQ=AP

AQ=HP

=>ΔAHQ=ΔHAP

b: ΔFBC vuông tại F

mà FM là trung tuyến

nên FM=BC/2

ΔECB vuông tại E

mà EM là trung tuyến

nên EM=BC/2=FM

=>ΔMEF cân tại M

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC