K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Lần sau chép đề cẩn thận nhé. Sai tùm lum.

a, ΔAHB = ΔAHC.

Xét hai tam giác vuông AHB và AHC có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

Do đó: ΔAHB =  ΔAHC (cạnh huyền - góc nhọn)

b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )

Vì HD//BA (gt) => ^B = ^H1 (đồng vị) 

Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)

Xét ΔDHM và ΔDCM có:

DH = DC (hai cạnh bên)

HM = MC (M là trung điểm của HC)

DM : chung

Do đó: ΔDHM = ΔDCM (c.c.c)

=> ^M1 = ^M2 (hai góc tương ứng)

Mà ^M1 + ^M2 = 180o (kề bù)

=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.

Vậy DM // AH (cùng vuông góc với BC).

c, G là trọng tâm ΔABC. AH + BD > 3HD.

Ta có: ^H2 = ^A1 (so le trong)

Mà ^A1 = ^A2 (hai góc tương ứng)

=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy) 

=> DA = DH (hai cạnh bên)

Vì DH = DC (hai cạnh bên)

     DA = DH (hai cạnh bên)

=> DA = DC 

=> BD là trung tuyến ứng với cạnh bên AC.

Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.

Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB

=> G là trọng tâm của  ΔABC.

30 tháng 4 2019

A C B H M 1 2 D 1 1 2 2 1 2

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của CB

HD//AB

=>D là trung điểm của AC

ΔAHC vuông tại H có HD là trung tuyến

nên DH=DC

=>ΔDHC cân tại D

=>DM vuông góc HC

=>DM//AH

5 tháng 6 2021

Ối zồi ôi ! Cái quả đề thật là zễ thương :D

5 tháng 6 2021

Dài :))

a: Xét ΔAHB và ΔAHC có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó:ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

b: Xét ΔABC có 

AH là đường trung tuyến

BD là đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

6 tháng 5 2022

undefinedkhocroi

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có

DM chung

MH=MC

=>ΔDMH=ΔDMC

=>góc DHC=góc DCH

=>góc DHC=góc ABH

=>DH//AB

c: Xét ΔAHC có

M là trung điểm của CH

MD//AH

=>D là trung điểm của AC

Xét ΔABC có

BD,AH là đường cao

BD cắt AH tại G

=>G là trọng tâm

a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH<AH<AB

=>góc HAB<góc HBA<góc AHB

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

c: góc KAH=góc HAC

góc KHA=góc HAC

=>góc KAH=góc KHA

=>ΔAKH cân tại K

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trung điểm của AB