K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

 Ta có: x2 + 2x + 3

    = x2 + x + x + 1 + 2

  = (x2 + x) + (x + 1) + 2

  = x(x + 1) + (x + 1) + 2

  = (x + 1)(x + 1) + 2

  = (x + 1)2 + 2 > 0 [ vì (x + 1)2 \(\ge\)0; 2 >0)

=> đa thức f(x) ko có nghiệm

a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)

b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)

c: \(M\left(x\right)=-3x^4y^3+10+xy\)

30 tháng 4 2022

\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)

\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)

\(M=-2x^4y^3+7xy^2\)

\(\text{Bậc là:}7\)

\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)

\(P\left(x\right)=x^3+x+x^2+2\)

\(P\left(x\right)=x^3+x^2+x+2\)

\(\text{Bậc là:}3\)

\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)

\(M=-3x^4y^3+10+xy\)

\(\text{Bậc là:}7\)

 

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

30 tháng 3 2018

Ta có : f (x)= (-x - 4) . (-2/5x + 1/4) = 0

=> * -x - 4 = 0                                                                                                      * -2/5x + 1/4 = 0

             -x = 4                                                                                                                  -2/5x = 1/4

              x = -4                                                                                                                        x = -5/8

                                                    Vậy x = -4 hoặc x = -5/8 là nghiệm của đa thức f(x)

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

26 tháng 4 2021

Ta có: 

\(\Delta'=1-9=-8< 0\)

Vậy phương trình vô nghiệm 

hay đa thức f(x) vô nghiệm

16 tháng 6 2020

N(x) = 2x + x3 + x2 - 4x - x3

        = x2 - 2x 

N(x) = 0 <=> x2 - 2x = 0

              <=> x(x - 2) = 0

              <=> x = 0 hoặc x - 2 = 0

              <=> x = 0 hoặc x = 2

Vậy nghiệm của N(x) là 0 và 2 

16 tháng 6 2020

\(N\left(x\right)=2x+x^3+x^2-4x-x^3=x^2-2x=x\left(x-2\right)\)

Để N(x) có nghiệm => x(x-2)=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy x=0; x=2