K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

có tam giác CAM vuông tại A do ...

=> góc ACM + góc CMA = 90 (đl)

có  : góc CMA + góc CMD + góc DMB =  180

góc CMD = 90 (gt) 

=> góc CMA + góc DMB = 90

=> góc ACM = góc BMD 

xét tam giác CAM và tam giác MBD có : góc CAM = góc MBD = 90

=> tam giác CAM ~ tam giác MBD (g-g)

a: Gọi giao của CM với BD là E

góc ACM=góc MEB

=>góc ACM=góc DMB

=>ΔACM đồng dạng với ΔBMD

b: ΔACM đồng dạng với ΔBMD

=>AC/BM=AM/BD

=>AC*BD=AM*BM

a: Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

b: Ta có: ACBD là hình bình hành

nên AD//BC

c:

Ta có: CE+EB=CB

FD+AF=AD

mà CB=AD

và CE=FD

nên EB=AF

Xét tứ giác EBFA có 

EB//AF

EB=AF

Do đó: EBFA là hình bình hành

Suy ra:EF và BA cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AB

nên O là trung điểm của FE

28 tháng 11 2022

a: Kẻ CO cắt BD tại E

Xét ΔOAC vuông tại A và ΔOBE vuông tại B có

OA=OB

góc COA=góc EOB

Do đó: ΔOAC=ΔOBE

=>OC=OE

Xét ΔDCE có

DO vừa là đường cao, vừalà trung tuyến

nên ΔDEC cân tại D

=>góc DCE=góc DEC=góc CAO

=>CO là phân giác của góc DCA

Kẻ CH vuông góc với CD

Xét ΔCAO vuông tại A và ΔCHO vuông tại H có

CO chung

góc ACO=góc HCO

DO đó: ΔCAO=ΔCHO

=>OA=OH=OB và CH=CA

Xét ΔOHD vuông tại H và ΔOBD vuông tại B có

OD chung

OH=OB

Do đó: ΔOHD=ΔOBD

=>DH=DB

=>AC+BD=CD
b: AC*BD=CH*HD=OH^2=R^2=AB^2/4

=>4*AC*BD=AB^2

A B M X Y C D Drawed by Hoi con bo

Chắc mk nghĩ thế này là ổn lắm rùi

Hội con 🐄 chúc bạn học tốt!!! 

7 tháng 4 2020

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

7 tháng 4 2020

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4