- Tìm x, biết:
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+.....+\frac{2}{x\times\left(x+2\right)}=\frac{2015}{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1=3/3=4/4=5/5=...
=> 1+1/1*3=3/1*3=1/1
=> 1+1/2*4=4/2*4=1/2
=>...
Bieu thuc se con lai la 1*1/2*1/3*1/4*1/5
Vay A=1/120
\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)
\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\cdot(x+2)}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{101}\)
\(\Leftrightarrow x+2=101\Leftrightarrow x=99\)
Vậy x = 99
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{33}{99}-\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{99}\)
\(\Rightarrow x+2=99\)
\(\Rightarrow x=99-2\)
\(\Rightarrow x=97\)
Vậy \(x=97\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{x\cdot\left(x+2\right)}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{32}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{99}\)
\(\Rightarrow x+2=99\)
\(\Rightarrow x=99-2\)
\(\Rightarrow x=97\)
Vậy x=97
1-1/x+1=2015/2016
=>1/x+1=1-2015/2016=1/2016
=>x+1=2016=>x=2015
mình không ghi lại đề nha:
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(\frac{x}{x+1}=\frac{2015}{2016}\)
=>x=
Đến đó bạn tự giải tiếp ha
Bài làm
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\frac{1}{x+2}=\frac{1}{2016}\)
\(\Rightarrow x+2=2016\)
\(x=2014\)
#thanks#