1.Cho ba số dương a+b+c=1.Chứng minh rằng:
\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
2.Cho x,y,z là các số thực dương và thỏa mãn xy+yz+zx=xyz.Chứng minh rằng:
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3+\left(1+y\right)\left(1+z\right)}+\frac{zx}{y^2+\left(1+z\right)\left(1+x\right)}\)\(\ge\)\(\frac{1}{16}\)
3.Cho hai số thực dương a,b và thỏa mãn 2a +3b \(\le4\).Tìm giá trị nhỏ nhất của biểu thức:
Q=\(\frac{2002}{a}+\frac{2017}{b}+2996a-5501b\)
4.Gỉai phương trình : \(\left(x^2-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)
1) Ta có ĐK: 0 < a,b,c < 1
\(\sqrt{\frac{a}{1-a}}=\frac{a}{\sqrt{a\left(1-a\right)}}\ge2a\) (BĐT AM-GM cho 2 số a và 1-a)
Tương tự, ta có \(\sqrt{\frac{b}{1-b}}=\frac{b}{\sqrt{b\left(1-b\right)}}\ge2b\) và \(\sqrt{\frac{c}{1-c}}=\frac{c}{\sqrt{c\left(1-c\right)}}\ge2c\)
⇒ \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge2\left(a+b+c\right)=2\)(do a+b+c=1)
Dấu đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = \(\frac{1}{2}\) (không thoả mãn điều kiện a+b+c=1)
Dấu đẳng thức trên không xảy ra được. Vậy ta có bất đẳng thức\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)