Tìm y biết:
( y-\(\frac{1}{2}\)) :(\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+ ... +...+\(\frac{1}{90}\)) =\(\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y-\frac{1}{2}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{3}\right):\left(1-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right):\frac{9}{10}=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right)=\frac{3}{10}\)
\(\Leftrightarrow y=\frac{4}{5}\)
Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{90}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)
\(=>\left[y-\frac{1}{2}\right]x\frac{9}{10}=\frac{1}{3}\)
\(y-\frac{1}{2}=\frac{1}{3}:\frac{9}{10}\)
\(y-\frac{1}{2}=\frac{10}{27}\)
\(=>y=\frac{10}{27}+\frac{1}{2}\)
\(y=\frac{20+27}{54}=\frac{47}{54}\)
Vậy \(y=\frac{47}{54}\)
Ủng hộ mk nha!!!
\(\frac{3}{2}+\frac{13}{6}+\frac{37}{12}+\frac{81}{20}-y=\frac{4}{5}\)
\(\frac{54}{5}-y=\frac{4}{5}\)
y=10
Đầu tiên , ta cộng các phần nguyên lại với nhau trước :
( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) + ( \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{8}{72}+\frac{1}{90}+\frac{1}{10}\)
= 45 + \(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{42}+\frac{1}{72}\right)+\left(\frac{1}{10}+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{90}\right)+\frac{1}{56}\)
= 45 +
tới đây tớ chịu , các cậu giúp với
Đầu tiên , cộng các phần nguyên lại với nhau , ta có :
( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) + ( \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\))
= 45 + \(\left(\frac{1}{6}+\frac{1}{30}\right)+\frac{1}{2}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi cộng trong ngoặc , ta được 6 / 30 , rút gọn tối giản còn 1 / 5
= 45 + \(\left(\frac{1}{5}+\frac{1}{20}\right)+\frac{1}{2}+\frac{1}{12}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi cộng trong ngoặc và rút gọn tối giản , ta được 1 / 4
= 45 + \(\left(\frac{1}{4}+\frac{1}{2}\right)+\frac{1}{12}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi cộng trong ngoặc rồi rút gọn , ta được 3 / 4
= 45 + \(\left(\frac{3}{4}+\frac{1}{12}\right)+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
rút gọn lại ta được 5 / 6
= 45 + \(\left(\frac{5}{6}+\frac{1}{42}\right)+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
rút gọn tối giản ra 6 / 7
= 45 + \(\left(\frac{6}{7}+\frac{1}{56}\right)+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi tính trong ngoặc rút gọn được 7 / 8
= 45 + \(\left(\frac{7}{8}+\frac{1}{72}\right)+\frac{1}{90}+\frac{1}{10}\)
tính trong ngoặc rồi rút gọn ra 8 / 9
= 45 + \(\left(\frac{8}{9}+\frac{1}{90}\right)+\frac{1}{10}\)
cũng rút gọn tiếp ta được 9 / 10
= 45 + \(\left(\frac{9}{10}+\frac{1}{10}\right)\)
= 45 + 1
= 46
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
\(S=\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(\frac{-9}{2}\right)\right]-\frac{5}{6}\)
\(S=\frac{3}{4}-\frac{1}{4}-\left[\frac{14}{6}+\left(\frac{-27}{6}\right)\right]-\frac{5}{6}\)
\(S=\frac{1}{2}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{3}{6}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{11}{6}\)
\(1-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=1-\left(\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1-\left(1-\frac{1}{10}\right)\)
\(=1-\frac{9}{10}\)
\(=\frac{1}{10}\)
\(\left(y-\frac{1}{2}\right):\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\left(1-\frac{1}{10}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\frac{9}{10}=\frac{1}{3}\)
=> \(y-\frac{1}{2}=\frac{3}{10}\)
=> \(y=\frac{13}{10}\)
Study well ! >_<