K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

mk co nen nghe ban than da tung phan boi mk ko... 

Ta cá:\(K=x^2-2\times x-y=x^2-\left(2\times x+y\right)\)

Để K đạt GTLN

Suy ra x^2 lớn nhất nên x lớn nhất

2x+y nhỏ nhất nên y nhỏ nhất(2x Ko nhỏ nhất vi x lớn nhất nên 2x lớn nhất)

Mà \(y\ge0\)

Ta chọn y=0,thay vào 2x+y ta đc

\(2\times x+0\le4\)

\(\Rightarrow2\times x\le4\)

\(\Rightarrow x\le2\)

Mà x lớn nhất nên ta chọn x=2 do đá k sẽ bằng

\(K=2^2-2\times2-0=4-4=0\)

Vậy K đạt GTLN là 0 tại x =2 và y=0

nhớ h cho mk nha

6 tháng 6 2019

Từ \(0\le x\le y\le1\) và \(2x+y\le2\Rightarrow2x^2+xy\le2x\)(nhân cả 2 vế với \(x\ge0\))

                                                                  \(\left(y-x\right)y\le y-x\)(nhân cả 2 vế của \(0\le y\le1\)với \(y-x\ge0\)(do \(x\le y\))

Cộng từng vế ta có : 

\(2x^2+xy+\left(y-x\right)y\le2x+y-x\)

\(\Leftrightarrow2x^2+y^2\le x+y\)

\(\Leftrightarrow\left(2x^2+y^2\right)^2\le\left(x+y\right)^2\)

Mặt khác \(\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+1.y\right)^2\le\left(\frac{1}{2}+1\right)\left(2x^2+y^2\right)\)(bất đẳng thức Bunhiacopxki)

\(\Rightarrow\left(2x^2+y^2\right)^2\le\frac{3}{2}\left(2x^2+y^2\right).\)

\(\Leftrightarrow2x^2+y^2\le\frac{3}{2}.\)(đpcm)

Chúc học tốt 

1 tháng 1 2018

Đáp án là A

31 tháng 8 2018

\(P=(3x/2+6/x)+(5y/2+10/y)+(x+y)/2 >=6+10+2=18\)