CMR: gtri biểu thức không phụ thuộc vào x\(\sqrt{Sin^4x+4Cos^2x}+\sqrt{Cos^4x+4Sin^2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)
\(=\sqrt{4-4sin^2x+sin^4x}+\sqrt{4-4cos^2x+cos^4x}\)
\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)
\(=2-sin^2x+2-cos^2x=4-\left(sin^2x+cos^2x\right)\)
\(=3\)
\(P=\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2cos^2x+1+2sin^2x+1\)
\(=2\left(sin^2x+cos^2x\right)+2=4\)
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
Đề bài không chính xác, biểu thức này vẫn phụ thuộc a
Đề bài đúng phải là: \(\sqrt{sin^4a+4cos^2a}+\sqrt{cos^4a+4sin^2a}\)
\(\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)
\(=\sqrt{sin^4x-4sin^2x+4}+\sqrt{cos^4x-4cos^2x+4}\)
\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)
\(=2-sin^2x+2-cos^2x\)
\(=4-\left(sin^2x+cos^2x\right)=3\)
App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618